تجاوز إلى المحتوى الرئيسي
User Image

Mohammed Hamad Aldosary

Assistant Professor

Faculty

كلية العلوم
Physics and Astronomy Dept., Building 4, 2nd Floor, Office 2B6
المنشورات
مقال فى مجلة

Observation of magnon-mediated current drag in Pt/yttrium iron garnet/Pt(Ta) trilayers

Pure spin current, a flow of spin angular momentum without flow of any accompanying net charge, is generated in two common ways. One makes use of the spin Hall effect in normal metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective motion of magnetic moments or spin waves with the quasi-particle excitations called magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI). Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are interconvertible across the interfaces, predicated as the magnon-mediated current drag phenomenon. The transmitted signal scales linearly with the driving current without a threshold and follows the power-law Tn with n ranging from 1.5 to 2.5. Our results indicate that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device which is an essential ingredient in spintronics.

مزيد من المنشورات
publications

Among van der Waals (vdW) layered ferromagnets, Fe3GeTe2 (FGT) is an excellent candidate material to form FGT/heavy metal heterostructures for studying the effect of spin−orbit torques (SOT).

2019
publications

We report a longitudinal spin Seebeck effect (SSE) study in epitaxially grown FeF2ð110Þ antiferromagnetic (AFM) thin films with strong uniaxial anisotropy over the temperature range of 3.8–250 K…

2019
publications

Electrical currents in a magnetic-insulator/heavy-metal heterostructure can induce two simultaneous effects, namely, spin Hall magnetoresistance (SMR) on the heavy-metal side and spin-orbit…