هذا المقرر الاكاديمي يتعلق باعطاء مقدمة عن العلوم البيئية وكيمياء البيئة من خلال التعرف على التركيب الكيميائي للاغلفة الارضية (الغلاف هوائي والمائي والصخري) ومناقشة التلوث الكيميائي لهها وكذلك الطرق والتقنيات العلمية المستخدمة للتحليل الكيميائي لهذه الملوثات
يناقش هذا المقرر الاكاديمي استخدام مفاهيم علم الاحصاء في معالجة البيانات والنتائج المتحصل عليها من الكيمياء التحليلية وذلك من خلال استخدام الاختبارات الاحصائية لتقييم مصداقية ودقة نتائج البيانات الكيميائية وخلوها من الاخطاء المنتظمة أو محدودية الاخطاء العشوائية
Application of biopesticides is a globally rising phenomena on yearly
basis, and the use of traditional insecticides is on the decline. North
America uses the largest percentage of the biopesticide market share at
44 %, followed by the Europe with 20 %, each South and Latin American
countries with 10 %, and about 6 % in Asia and India. However biopesticide
growth is projected at 10 % annually; it is highly variable among the
regions constrained by factors such as regulatory hurdles, public and
We review the solutions of some functional equations for which the differentiability was the aim of study in the beginning of the last century. By decomposing these functions on the Schauder basis (which are only Lipschitz of order 1), we determine the exact Hölder regularity (even when it exceeds 1) and thus prove that this regularity changes widely from point to point. We also determine the Sobolev (or Besov) spaces to which these functions belong.
The study of multi-fractal functions has proved important in several domains of physics. Some physical phenomena such as fully developed turbulence or diffusion limited aggregates seem to exhibit some sort of self-similarity. The validity of the multi-fractal formalism has been proved to be valid for self-similar functions. But, multi-fractals encountered in physics or image processing are not exactly self-similar. For this reason, we extend the validity of the multi-fractal formalism for a class of some non-self-similar functions.