Effect of torch angle on arc properties and weld pool shape in stationary GTAW

In this paper, a three-dimensional (3D) numerical simulation is performed on a stationary arc to study the effect of torch angles in gas tungsten arc welding (GTAW) of SS304 stainless steel. A comparison has been made to investigate 90 and 70° torch angles and analyze the effect on arc and weld pool shape. Current density, heat flux, and gas shear stress are calculated in the arc region and are used as input to the workpiece to determine the weld pool. Also, both buoyancy and Marangoni shear affect the weld pool shape and are taken into account.

Effect of different electrode tip angles with tilted torch in stationary gas tungsten arc welding: A 3D simulation

In this study, the effect of different tip angles (30°, 60°, 90° and 120°) on the arc and weld pool behavior is analyzed in 2 mm and 5 mm arc lengths with tilted (70°) torch. Arc temperature, velocity, current density, heat flux and gas shear are investigated in the arc region and pool convection and puddle shapes are studied in the weld pool region. The arc temperature at the tungsten electrode is found the maximum with sharp tip and decreases as the tip angle increases. The arc temperature on the anode (workpiece) surface becomes concentrated with increase in tip angle.

أهلاً بك في موقعي الشخصي..

الصفحات

اشترك ب KSU Faculty آر.إس.إس