Numerical Solution of Nonlinear Equations in one Variable; Solving Linear Systems Of Equations; Interpolation; Numerical Differentiation and Integration; Numerical Solution of ODEs.
This article is dedicated to analyzing the heat transfer in the flow of water-based nanofluids in a channel with non-parallel stretchable walls. The magnetohydrodynamic (MHD) nature of the flow is considered. Equations governing the flow are transformed into a system of nonlinear ordinary differential equations. The said system is solved by employing two different techniques, the variational iteration method (VIM) and the Runge-Kutta-Fehlberg method (RKF).
Physical Phenomena’s located around us are primarily nonlinear in nature and their solutions are of highest significance for scientists and engineers. In order to have a better representation of these physical models, fractional calculus is used. Fractional order oscillation equations are included among these nonlinear phenomena’s. To tackle with the nonlinearity arising, in these phenomena’s we recommend a new method.