This work augments the Naïve Bayesian learning algorithm with a second training phase in an attempt to improve its classification accuracy. This is achieved by finding more accurate estimations of the needed probability terms. This approach helps in dealing with the problem of the lack of training data. Unlike many previous approaches that deal with this problem, the proposed method is an eager method in the sense that it does most of the work during training and, therefore, it does not increase classification time. It consists of two phases.