Modelling the High-Frequency FX Market: An Agent- Based Approach

In this thesis, we use an agent-based modelling (ABM) approach to model the trading activity in the Foreign Exchange (FX) market which is the most liquid financial market in the world. We first establish the statistical properties (stylized facts) of the trading activity in the FX market using a unique high-frequency dataset of anonymised individual traders’ historical transactions on an account level, spanning 2.25 years. To the best of our knowledge, this dataset is the biggest available high-frequency dataset of individual FX market traders’ historical transactions.

الصفحات

اشترك ب KSU Faculty آر.إس.إس