Extremal Weighted Path Lengths in Random Binary Search Trees
Journal Article
Lasmar, Rafik Aguech, Hosam Mahmoud, Nabil . 2007
نوع عمل المنشور:
Research Paper
رابط المنشور على الويب:
المجلة \ الصحيفة:
Probability in the Engineering and Informational Sciences
رقم العدد:
1
رقم الإصدار السنوي:
21
الصفحات:
133 إلى141
مستخلص المنشور:
We consider weighted path lengths to the extremal leaves in a random binary search tree. When linearly scaled, the weighted path length to the minimal label has Dickman's infinitely divisible distribution as a limit. By contrast, the weighted path length to the maximal label needs to be centered and scaled to converge to a standard normal variate in distribution. The exercise shows that path lengths associated with different ranks exhibit different behaviors depending on the rank. However, the majority of the ranks have a weighted path length with average behavior similar to that of the weighted path to the maximal node.
ملف مرفق:
| المرفق | الحجم |
|---|---|
| 131.4 كيلوبايت |
