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Definition and examples

Pearson’s r summarizes the relationship between two variables that
have a straight line or linear relationship with each other.

(1) If the two variables have a straight line relationship in
the positive direction, then r will be positive and
considerably above 0.

(2) If the linear relationship is in the negative direction,
so that increases in one variable, are associated with
decreases in the other, then r < 0.

(3) If the linear relationship is constant (no correlation),
then r = 0.

(4) The possible values of r range from -1 to +1, with
values close to 0 signifying little relationship between
the two variables.





Definition

The most common formula for computing a product-moment
correlation coefficient (r) is given below

r =
SXY√

SXX
√
SYY

where

1 SYY =
n∑

i=1

(Yi − Y )2 =
n∑

i=1

Y 2
i − nY

2

2 SXX =
n∑

i=1

(Xi − X )2 =
n∑

i=1

X 2
i − nX

2

3 SXY =
n∑

i=1

(Yi − Y )(Xi − X ) =
n∑

i=1

XiYi − nX Y

where X and Y are the means of X and Y respectively.



Example 1

The results of a class of 10 students on midterm exam mark (X )
and on the final examination mark (Y ) are as follows

X 77 54 71 72 81 94 96 99 83 67
Y 82 38 78 34 47 85 99 99 79 68

1 Construct the scatter diagram.

2 Is there a linear relationship (linear association) between X and
Y? Is it positive or negative?

3 Calculate the sample coefficient of correlation (r).



Solution

1) The scatter diagram

2) The scatter diagram suggests that there is a positive linear
association between X and Y since there is a linear trend for which
the value of Y linearly increases when the value of X increases.



3) Calculating the sample coefficient of correlation (r)

Xi Yi A B A2 B2 AB

77 82 −2.4 11.1 5.76 123.21 −26.64
54 38 −25.4 −32.9 645.16 1082.41 835.66
71 78 −8.4 7.1 70.65 50.41 −59.64
72 34 −7.4 −36.9 54.76 1361.61 273.06
81 47 1.6 −23.9 2.56 571.21 −38.24
94 85 14.6 14.1 213.16 198.81 205.86
96 99 16.6 28.1 275.56 789.61 466.46
99 99 19.6 28.1 384.16 789.61 550.76
83 79 3.6 8.1 12.96 65.61 29.16
76 68 −12.4 −2.9 153.76 8.41 35.96

where A = (Xi − X ) and B = (Yi − Y )



We have

X =

∑n
i=1 Xi

n
=

794

10
= 79.4 and Y =

∑n
i=1 Yi

n
=

709

10
= 70.9

SYY = 5040.9 and SXX = 1818.4 and SXY = 2272.4

Then the sample coefficient of correlation is

r =
SXY√

SXX
√
SYY

=
2272.4√

1818.4
√

5040.9
= 0.75056 ≈ 0.75

Based on our rule, there is a strong positive linear relationship
between X and Y . (The values of Y increase when the values of
X increase).



Example 2

The table below shows the number of absences, x, in a Calculus
course and the final exam grade, y, for 7 students.

X 1 0 2 6 4 5 3
Y 95 90 90 55 70 80 85

1 Construct the scatter diagram.

2 Is there a linear relationship (linear association) between X and
Y? Is it positive or negative?

3 Calculate the sample coefficient of correlation (r).



Solution

1) The scatter diagram

2) The scatter diagram suggests that there is a negative linear
association between X and Y since there is a linear trend for which
the value of Y linearly decreases when the value of X increases.



3) Calculating the sample coefficient of correlation (r)
We have

X =

∑n
i=1 Xi

n
=

19

7
and Y =

∑n
i=1 Yi

n
=

565

7

SYY =
7∑

i=1

Y 2
i − 7× Y

2
= 46775− 7× (

565

7
)2 = 1171.429

SXX =
7∑

i=1

X 2
i − 7× X

2
= 75− 7× (

19

7
)2 = 23.42857

SXY =
7∑

i=1

XiYi − 7× X Y = 1380− 7× (
19

7
)(

565

7
) = −153.5714



Then the sample coefficient of correlation is

r =
SXY√

SXX
√
SYY

=
−153.5714√

23.42857
√

1171.429
= −0.9269997 ≈ −0.93

This result shows, there is a strong negative correlation between
the number of absences and the final exam grade, since r is very
close to -1. Thus, as the number of absence increases, the final
exam grade tends to decrease.



Hypotheses testing of correlation coefficient

The sample correlation coefficient, r , is our estimate of the
unknown population correlation coefficient. The symbol for the
population correlation coefficient is ρ, the Greek letter (rho).
ρ = population correlation coefficient (unknown).
r = sample correlation coefficient (known; calculated from sample
data). The hypothesis test lets us decide whether the value of the
population correlation coefficient ρ is (close to 0) or (significantly
different from 0). We decide this based on the sample correlation
coefficient r and the sample size n. For such test, we follow the
steps below:
Setup1 the hypotheses {

H0 : ρ = 0.
H1 : ρ 6= 0.



Setup2 Calculate the test statistics under H0 : ρ = 0 as

t = r
√
n−2√
1−r2

Where is the simple correlation coefficient calculated from the
sample and is the sample size. This statistic follows t distribution
with n − 2 degrees of freedom.
Setup3 Specify the critical regions

Setup4 Decision When the value of the test statistic belongs to the
rejection region, we reject H0, otherwise accept H0.
Conclusion: ”There is sufficient evidence to conclude that there is
a significant linear relationship between x and y because the
correlation coefficient is significantly different from 0.”



Example 3

Test the significance of the correlation coefficients at 5% level of
significance in
a. Example 1
b. Example 2
Solution
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The simple linear regression model describing the linear
relationship between X (independent variable/predictor
variable/explanatory variable) and Y (dependent variable/response
variable) is given by the following regression line.

Yi = β0 + β1Xi + εi , i = 1, . . . , n,

where,

1 (Xi ,Yi ) is the i − th value of the X and Y ,

2 ei is the random term in the regression simple regression line
and this term makes the regression analysis as a probabilistic
approach,

3 (b0, b1) are the parameters of the simple regression line, b0 is
the constant term (intercept) and b1 is the coefficient of the
independent variable X (slope).





Least Squares and the Fitted Model

The least squares method is used to find the estimation of
parameters (b0, b1) . The estimated line is the line that makes the
sum of the squares of the vertical distances of the data points from
the line as small as possible, computationally (the sum of the error
equal zero), this can be seen as the expected value of the random
term E (ei ) = 0 So, the estimated regression line can be obtained
as follows:

Yi = β0 + β1Xi + εi (1)

where,
1 Yi is the (random) response for i − th case,
2 β0, β1 are the parameters,
3 Xi is a known constant, the value of the predictor variable for

the i − th case,
4 εi is a random error term, such that,

E (εi ) = 0, Var(εi ) = σ2, Cov(εi , εj) = 0, i 6= j



Least square estimates coefficients

Theorem

The least square estimates coefficients of the simple regression
model can also be written in terms of linear form of Yi as

b1 =

n∑
i=1

(Xi − X )(Yi − Y )

n∑
i=1

(Xi − X )2
=

n∑
i=1

XiYi − nX Y

n∑
i=1

X 2
i − nX

2

= r

√
SYY
SXX

b0 = Y − b1X



We can written b0 and b1 with another form:

b1 =
n∑

i=1

(Xi − X )∑n
i=1(Xi − X )2

Yi =
n∑

i=1

KiYi

and

b0 =
n∑

i=1

(1

n
− XKi

)
Yi =

n∑
i=1

LiYi

where Ki and Li are constants, and Yi is a random variable with
mean and variance given above:

Ki =
(Xi − X )∑n
i=1(Xi − X )2

(2)

Li =
1

n
− XKi =

1

n
− (Xi − X )∑n

i=1(Xi − X )2
(3)



Definition

The fitted regression line, also known as the prediction equation is:

Ŷi = b0 + b1Xi .

We shall find b0 and b1, the estimates of β0 and β1, so that the
sum of the squares of the residuals is a minimum. This
minimization procedure for estimating the parameters is called the
method of least squares. Hence, we shall find b0 and b1 so as to
minimize

SSE =
n∑

i=1

e2i =
n∑

i=1

(Yi − Ŷi )
2 =

n∑
i=1

(Yi − b0 − b1Xi )
2

SSE is called the error sum of squares.



Example 4

The table below shows some data from the early days of clothing
company. Each row in the table shows the company sales for a
year, and the amount spent on advertising in that year.

X 23 26 30 34 43 48 52 57 58
Y 651 762 856 1063 1190 1298 1421 1440 1518

1 Draw the scatter diagram of the data and write your comment
about it.

2 Find the least square estimate of the simple linear regression
model and interpret the result.



Solution

1. The scatter is given by

The scatter diagram shows the relation between the sales and
advertising in linear and the correlation coefficient between the
Advertising X and Sales Y is given by



r =
SXY

√
SXX
√
SYY

=
33671.56√

1437.56
√

807485.6
= 0.988,

where

1 SYY =
n∑

i=1

(Yi − Y )2 = 807485.6

2 SXX =
n∑

i=1

(Xi − X )2 = 1437.56

3 SXY =
n∑

i=1

(Yi − Y )(Xi − X ) = 33671.56

b. From the data we have

X = 41.22, Y = 1133.22, n = 9

9∑
i=1

X 2
i = 16731,

9∑
i=1

Y 2
i = 12365219,

9∑
i=1

XiYi = 454097



SXX =
9∑

i=1

X 2
i − 9× X

2
= 16731− 9× 41.222 = 1437.556

SYY =
9∑

i=1

Y 2
i − 9× Y

2
= 12365219− 9× 1133.222 = 807485.6

SXY =
9∑

i=1

XiYi−9×X Y = 454097−9×41.22×1133.22 = 33671.56

The least-square line

b1 =
SXY
SXX

=
33671.56

1437.556
= 23.42279

b0 = Y − b1 × X = 1133.22− 23.42× 41.22 = 167.689

Finally, we have
Ŷ = 167.689 + 23.42X



The slope b1 can be calculated using the correlation coefficient as

b1 = r

√
SYY
SXX

= 0.988

√
807485.6

1437.556
= 23.42

In this case, our outcome of interest is sales. If we use Advertising
as the predictor variable, linear regression estimates that

Sales = 167.7 + 23.42Advertising .

That is, if advertising expenditure is increased by one million
dollars, then sales will be expected to increase by 23.4 million
dollars, and if there was no advertising we would expect sales of
167.7 million dollars.



Assumptions

Important assumptions and properties can be added to the simple
linear regression line defined in (1); they are:

1 The error εi is normally distributed with mean 0 and variance
σ2. The last point states that the random errors are
independent (uncorrelated).

2 Since the error εi ∼ N(0, σ2) this also implies that:

E (Yi ) = β0 + β1Xi , Var(Yi ) = σ2,Cov(Yi ,Yj) = 0, i 6= j ,

hence the response variable Yi is normally distributed
N(β0 + β1Xi , σ

2)



Properties

The fitted regression line with the corresponding errors satisfy the
following properties (without proof):
1 The residuals sum equals to 0,

∑n
i=1 ei = 0

2 The sum of Y equals the sum of the fitted Y ,
n∑

i=1

Yi =
n∑

i=1

Ŷi

3 The sum of the weighted (by X ) residuals is 0,
n∑

i=1

Xiei = 0

4 The sum of the weighted (by Y ) residuals is 0,
n∑

i=1

Yiei = 0

5 The regression line goes through the point (X ,Y )



Estimation of the error variance

The fitted values for the individual observations are obtained by
plugging in the corresponding level of the predictor variable (Xi )
into the fitted equation. The residuals are the vertical distances
between the observed values (Yi ) and their fitted values Ŷi , and
are denoted as ei , are given by

ei = Yi − Ŷi , i = 1, 2, ..., n.

From example 4, we have

ei = Yi − Ŷi = Yi − 167.6829− 23.42279Xi ; i = 1, 2, ..., 9.



Example

The values of Yi , Ŷi and ei are given in the following table

Advertising(X ) Sales(Y ) Ŷ e e2

23 651 706.41 −55.41 3070.27
26 762 776.68 −14.68 215.36
30 856 870.37 −14.37 206.38
34 1063 964.06 98.94 9789.52
43 1190 1174.86 15.14 229.22
48 1298 1291.98 6.02 36.24
52 1421 1385.67 35.33 1248.21
57 1440 1502.78 −62.78 3941.33
58 1518 1526.2 −8.2 67.24

Then, we have
9∑

i=1

e2i ≈ 18804



Theorem

An unbiased estimate of σ2, named the mean squared error
(MSE), is

s2 =

n∑
i=1

(Yi − Ŷi )
2

n − 2
=

n∑
i=1

e2i

n − 2
=

SSE

n − 2

From example 4, we have

s2 =

9∑
i=1

e2i

9− 2
=

18804

7
= 2686.286

To obtain an estimate of the standard deviation (which is in the
units of the data), we take the square root of the error mean
square

s =
√
MSE =

√
2686.286 ≈ 51.83



Properties of the Least Squares Estimators

The coefficients Ki and Li defined by (2) and (3) satisfy the
following properties:

Lemma

The coefficients Ki and Li satisfy the following properties:

n∑
i=1

Ki = 0

n∑
i=1

KiXi = 1

n∑
i=1

K 2
i =

1

SXX

and

n∑
i=1

Li = 1

n∑
i=1

LiXi = 0

n∑
i=1

L2i =
1

n
+

X
2

SXX



Lemma

1 The point estimators of β0 and β1 and are unbiased, i.e.

E (b0) = β0 and E (b1) = β1

2 The point estimators of β1 and β0 and have the following
variances, respectively

Var(β1) = Var(b1) =
σ2

SXX
=

MSE

SXX

and

Var(β0) = Var(b0) = MSE
(1

n
+

X
2

SXX

)



Example 5

Calculate the variances and standard errors of the least square
estimators of coefficients of the simple linear regression in Example
4

Solution

For such data, the variances of b1 and b0 are given respectively by

Var(b1) =
σ2

SXX
=

MSE

SXX
=

2686.276

1437.56
≈ 1.87

Var(b0) = MSE
(1

n
+

X
2

SXX

)
= 2686.276×

(1

9
+

(41.22)2

1437.56

)
≈ 3473.5

Hence, the standard errors of b1 and b0 are given respectively by

S .E (b1) =
√
Var(b1) =

√
1.87 ≈ 1.37 and

S .E (b0) =
√
Var(b0) =

√
3473.5 ≈ 58.94



Inference

In this section, we discuss some statistical inferences related to the
simple linear regression model, such as constructing confident
intervals for the model coefficients and hypotheses testing about
the coefficients using t and F tests. We assume the errors follow
N(0, σ2). To develop the inference about the model coefficient, we
need to present some the following lemmas.

Lemma (Sampling distributions)

Let b1 and b0 are the estimators of the slope and the intercept in
the simple linear regression model, then each one of the quantities

T1 =
b1 − β1
S .E (b1)

and T0 =
b0 − β0
S .E (b0)

(4)

have t distribution with (n − 2) degrees of freedom.



Lemma (Interval estimation Concerning the Regression Coefficients)

A 100(1− α)% confidence interval for the parameters β1 and β0 in
the regression line respectively given by

b1 − t1−α
2
,n−2 × S .E (b1) < β1 < b1 + t1−α

2
,n−2 × S .E (b1)

and

b0 − t1−α
2
,n−2 × S .E (b0) < β0 < b0 + t1−α

2
,n−2 × S .E (b0)

where t1−α
2
,n−2 is a value of the t-distribution with n − 2 degrees

of freedom and

S .E (b1) =

√
MSE

SXX
and S .E (b0) =

√
MSE

(1

n
+

X
2

SXX

)



Example 6

Consider data in example 4, then find 95% confidence interval for
both β1 and β0.

Solution

For such data, we have calculated

S .E (b1) = 1.37 and t1−α
2
,n−2 = t0.975,7 = 2.365

Hence the 95% confidence interval of β1 is given by

23.42− 2.365× 1.37 < β1 < 23.42 + 2.365× 1.37

We get
20.2 < β1 < 26.7

This can be interpreted as: when the advertising increases by one
million, the sales increase with probability 95% within (20.2, 26.7)
million.



Similarly, we have calculated

S .E (b0) = 58.94 and t1−α
2
,n−2 = t0.975,7 = 2.365

Hence the 95% confidence interval of β0 is given by

167.68− 2.365× 58.94 < β0 < 167.68 + 2.365× 58.94

We get
28.3 < β0 < 307.1

This can be interpreted as: when we have no advertising, the sales
will be with probability 95% within (28.3, 307.1) million.



Hypothesis Testing of the parameters β0 and β1

The sampling distributions of T1 and T0 defined in (4) can be used
to test some hypotheses concerning the coefficients of the simple
linear regression model. These test are very important to check the
validity of the simple linear model.
Steps for testing βi , i = 0, 1

To test βi , i = 0, 1, is equal a certain value, say β
(0)
i , we follow the

steps below:



1 Setup the hypotheses

H0 : βi = β
(0)
i vs H1 : βi 6= β

(0)
i

2 Test statistic under H0

Ti =
bi − β

(0)
i

S .E (bi )
∼ tn−1

3 Critical regions

4 Decision:
When the calculated Ti belongs to the shaded areas, we reject
the null hypothesis H0, otherwise accept H0.



Remarks

1 In some applications, we may need to test

H0 : βi = 0 vs H1 : βi 6= 0

In these cases, you need to replace β
(0)
i by zeros.

2 In some applications, we may need to test

H0 : βi = 0 vs H1 : βi > (<) 0, i = 0, 1

In these cases, you need to replace the critical regions to
one-sided critical regions.

3 One may use the two-sided p − value approach

p − value = 2P(T > |Ti |), i = 0, 1

then reject H0 when p − value < α , otherwise accept H0. The
one-sided p − value is p − value = P(T > |Ti |), i = 0, 1 then
reject H0 when pvalue < α , otherwise accept H0.



Example 7

Consider data in example 4, test the hypotheses at 5% level of
significance

H0 : β1 = 0 vs H1 : β1 6= 0

and
H0 : β0 = 0 vs H1 : β0 6= 0

Solution

We start by testing β1. We have the following hypothesis:

H0 : β1 = 0 vs H1 : β1 6= 0

Test statistic under H0 is given by

T1 =
b1 − β(0)1

S .E (b1)
=

23.42− 0

1.37
≈ 17.1



The critical regions are given by

tα
2
,n−2 = t0.025,7 = 2.365 and − tα

2
,n−2 = −t0.025,7 = −2.365

Decision: The calculated test T1 = 17.1 belongs to the shaded
areas, then we reject the null hypothesis H0. As we can see from
the results that, T1 = 17.1. Also, the

p − value = 2P(T > |T1|) = 2P(T > |17.1|) ≈ 0.000 < 0.05,

then reject H0.



Now, we test β0. We have the following hypothesis:

H0 : β0 = 0 vs H1 : β0 6= 0

Test statistic under H0 is given by

T0 =
b0 − β(0)0

S .E (b0)
=

167.68− 0

58.94
≈ 2.85

The critical regions are given by

tα
2
,n−2 = t0.025,7 = 2.365 and − tα

2
,n−2 = −t0.025,7 = −2.365



Decision: The calculated test T1 = 2.85 belongs to the shaded
areas, then we reject the null hypothesis H0. As we can see from
the results that, T0 = 2.85. Also, the

p − value = 2P(T > |T0|) = 2P(T > |2.85|) ≈ 0.025 < 0.05,

then reject H0.



Coefficient of determination R2

The coefficient of determination can also be obtained by squaring
the Pearson correlation coefficient. This method works only for the
linear regression model

µi = µ0 + µ1 Xi , i = 1, . . . , n,

The method does not work in general. The coefficient of
determination, R2, represents the proportion of the total sample
variation in Y (measured by the sum of squares of deviations of the
sample Y values about their mean Y ) that is explained by (or
attributed to) the linear relationship between X and Y . Some
other way to calculate the coefficient of determination as

R2 =
SSR

SSTOT
= 1− SSE

SSTOT
where the total sum of squared error and the sum of squared

regression error are given respectively by

SSTOT =
n∑

i=1

(Yi − Y )2 and SSR =
n∑

i=1

(Ŷi − Y )2



Lemma

1 We have
SSTOT = SSE + SSR,

2 The coefficient of determination is a number between 0 and 1,
inclusive. That is,

0 ≤ R2 ≤ 1,

3 If R2 = 0, the least squares regression line has no explanatory
value,

4 If R2 = 1, the regression line explains 100% of the variation in
the response variable Y ,

5 The simple correlation coefficient can be simply obtained as

r =
√
R2

with sing as the sign of the estimate of the slope b1.



Example 8

Calculate the coefficient of determination of the simple linear
model in Example 4, then integrate the results. Also, calculate
Pearson correlation coefficient.

Solution

From the data, we have
SSTOT = SYY = 807485.6
SSE = 18804
SSR = SSTOT − SSE = 807485.6− 18804 = 788681.6

Then the coefficient of determination equals to

R2 =
SSR

SSTOT
=

788681.6

807485.6
= 0.9767

The result shows that 97.7% of the total variation in the sales is
due to the advertising. The simple correlation coefficient is

r =
√

0.9767 = 0.988
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