Dilution of Solutions

Solutions:

- Understanding how to prepare solutions and make dilutions is an essential skill for biochemists which is necessary knowledge needed for doing any experiment.
- What is SOLUTIONS ?

A simple solution is basically two substances that are evenly mixed together.
\rightarrow One of them is called the solute and the other is the solvent.
\rightarrow Solution can be composed from one or more solute dissolved in a solvent forming a homogenous mixture.

\square Example:

Solutions

Dilution of Solution :

\square Dilution of solution: means to add more solvent without the addition of more solute \rightarrow To make it less concentrated.

1. Volume to volume dilutions (ratio).
2. Preparing dilutions by using the $\mathrm{V}_{1} \mathrm{XC}_{1}=\mathrm{V}_{2} \mathrm{XC}_{2}$ formula.
3. Serial Dilutions.

The two beakers contain the same number of moles of solute.

(1) Volume to volume dilutions (ratio):

\square This type of dilutions describes the ratio of the solute to the final volume of the dilute solution.

- For example: to make $1: 10$ dilution of 1 M NaCl solution, one part of the $\mathbf{1 M ~ N a C l}$ solution, should be mixed with nine parts of water, for a total of ten parts.
\square Therefore $1: 10$ dilution means $\rightarrow 1$ part of $1 \mathrm{M} \mathrm{NaCl}+9$ parts of water.
- Thus:

\rightarrow if 10 ml of the $1: 10$ dilution was needed, then 1 ml of 1 M NaCl should be mixed with 9 ml of water.
\rightarrow if 100 ml of $1: 10$ dilution was needed, then 10 ml of the 1 M NaCl should be mixed with 90 ml of water. [The final concentration of NaCl in both cases will be $0.1 \mathrm{M}(1 / 10)=0.1$]
\square Example:

Example:

How to Prepare 2:10 dilution of solution (A) with 7 M , but the total

 volume is 20 ml not 10 ml ?```
how many ml of 7 M solution A we need to make 20 ml of 2:10 A solution?
```

```
2 ml }->10\textrm{ml
? }\stackrel{~m}{->
\(=(2 \mathrm{X} 20) / 10=4 \mathrm{ml}\)
```

So,
So, 4 ml from solution (A) of 7 M is needed and complete volume up to 20 ml (adding 16 ml water).
Note: [ 16 ml water $=20 \mathrm{ml}-4 \mathrm{ml}$ ].

How to Know the concentration of solution $A$ after dilution?

First we will find the DILUTION FACTOR by the following :
Dilution factor (D.F) = final volume / aliquot volume

$$
=10 / 2=5
$$

Then we will divide the stock concentration (before dilution) by the D.F:

$$
7 / 5=1.4 \mathrm{M}
$$

Note: To find out the stock concentration you will multiply the diluted concentration by the D.F

## (2) Preparing dilutions by using the $\mathrm{V}_{1} X \mathrm{C}_{1}=\mathrm{V}_{2} X \mathrm{C}_{2}$ formula:

$\square$ Sometimes it is necessary to use one solution to make a specific amount of a more dilute solution .
$\square$ To do this the following formula can be used:

## $\mathrm{V}_{1} \mathrm{X} \mathrm{C} \mathrm{C}_{1}=\mathrm{V}_{2} \mathrm{X} \mathrm{C}_{2}$

$\square$ Where:

- $\mathrm{V}_{1}=$ Volume of starting solution needed to make the new solution (volume of stock solution).
> $\mathrm{C} 1=$ Concentration of starting solution (stock solution).
> $\mathrm{V} 2=$ Final volume of new solution.
- $\mathrm{C} 2=$ Final concentration of new solution.


## Example: <br> Make 5 ml of 0.25 M solution from a 1.0 M solution?

```
how many ml of 1M solution we need to
 make 5 ml of 0.25M solution?
```

$\rightarrow \mathrm{V}_{1} \mathrm{XC}_{1}=\mathrm{V}_{2} \mathrm{XC}_{2}$

Where: $\mathrm{V}_{1}=? \quad, \mathrm{C}_{1}=1 \mathrm{M} \quad, \mathrm{V}_{2}=5 \mathrm{ml} \quad, \mathrm{C}_{2}=0.25 \mathrm{M}$

So: $\quad(\mathrm{V} 1) \mathrm{x}(1 \mathrm{M})=(5 \mathrm{ml}) \mathrm{x}(0.25 \mathrm{M})$
$\rightarrow \mathrm{V} 1=(5 \times 0.25) / 1=\mathbf{1 . 2 5} \mathbf{m l}$
So 1.25 ml of the 1 M solution is needed (starting solution) then complete the volume up to 5 ml by diluent (generally water).

## (3) Serial Dilutions :

$\square$ It is a stepwise dilution of a solution, where the dilution factor is constant at each step.
$\square$ The source of dilution material for each step comes from the diluted material of the previous step.


Dilution factor (D.F) = final volume / aliquot volume $=10 / 1=10$ (for each step)

## Find out the concentration of the diluted solutions:

Dilution factor (D.F) = final volume $/$ aliquot volume $=10 / \mathbf{1}=10$ (for each step)

From the lower concentrated solution to the higher one


From the more concentrated solution to the lower one

Starting with a 2.0 M stock solution of hydrochloric acid, prepare four standard solutions by serial dilution of the following Molarity respectively $1 \mathrm{M}, 0.5 \mathrm{M}, 0.25 \mathrm{M}, 0.125 \mathrm{M}$. [with $1: 2$ dilution] ?
$\rightarrow$ Dilution factor (D.F) = final volume / aliquot volume

$$
=2 / 1=\mathbf{2} \boldsymbol{\rightarrow} 1: 2
$$

-To prepare standard solution 1:
1 ml of the stock 2.0 M solution is needed and volume made up to 2 ml with distilled water (never forget to mix properly).
-To prepare standard solutions 2-4:
1 ml of the previously diluted solution is taken and volume is made up to a final volume of 2 ml by the addition of distilled water.

how to calculate the concentration of the diluted solutions if they unknown?
$\rightarrow$ First: find the D.F:
Dilution factor (D.F) = final volume / aliquot volume

$$
=2 / 1=\underline{\mathbf{2}}
$$

$\rightarrow$ Second: divide the previous solution concentration by the D.F:
-concentration of solution $\mathbf{1}=2.0 \mathrm{M}$ stock solution $/ 2=\mathbf{1} \mathbf{~ M}$
-concentration of solution $2=1 \mathrm{M} / 2=0.5 \mathrm{M}$
-concentration of solution $3=0.5 \mathrm{M} / 2=0.25 \mathrm{M}$
-concentration of solution $4=0.25 / 2=\mathbf{0 . 1 2 5} \mathbf{M}$

Praciical Pari

## Objectives:

$\square$ To get familiar with solution dilutions by different methods.

## Method:

## Solutiom diflutioms:

(1) $\qquad$
$\square$ Prepare 50 ml with $1: 20$ dilution using the 0.08 M NaOH solution you previously prepared.

- Calculation:
$\rightarrow$ To prepare the $1: 20$ dilution $\qquad$ ml of the starting solution $(0.08 \mathrm{M} \mathrm{NaOH})$ is needed and volume made up to a final volume of ml .
(2) $\qquad$
$\square$ Prepare 100 ml of $\mathbf{0 . 2} \mathrm{MHCl}$ from the previously $0.4 \mathrm{M} \mathbf{H C l}$ solution you previously prepared.
- Calculation:
$\qquad$
$\qquad$
$\rightarrow$ To prepare the $0.2 \mathrm{M} \mathrm{HCl} \ldots . . . . \mathrm{ml}$ of the starting solution $(0.4 \mathrm{M} \mathrm{HCl})$ is needed and volume made up to a total volume of .........ml by adding water.


## Method:

(3)
$\square$ Starting with a 3 M Copper Sulfate stock solution, prepare $\mathbf{8 m l}$ of four standard solutions (1 to 4) of the following Molarity respectively (dilution 2:8) :
(1)
M (2)
M
(3) M
(4) M .

- Calculation:
$\rightarrow$ To prepare standard solution $1: \ldots \ldots . . \mathrm{ml}$ of the stock 2.0 M solution is needed and volume made up to $\ldots . . . . \mathrm{ml}$ with distilled water.
$\rightarrow$ To prepare standard solution 2-4: $\ldots \ldots . . \mathrm{ml}$ of the previously diluted solution $(8.00 \times 10-2 \mathrm{M})$ is taken and volume is made up to a final volume of ...... ml by the addition of distilled water.

