Dilution of Solutions

Solutions

Dilution of Solution:

- Dilution of solution: means to add more solvent without the addition of more solute \rightarrow To make it less concentrated.

Common methods for dilution:

1. Volume to volume dilutions (ratio).
2. Preparing dilutions by using the $\mathrm{V}_{1} \mathrm{XC}_{1}=\mathrm{V}_{2} \mathrm{XC}_{2}$ formula.
3. Serial Dilutions.

The two beakers contain the same number of moles of solute.

(1) Volume to volume dilutions (ratio):

- This type of dilutions describes the ratio of the solute to the final volume of the dilute solution.
- For example: to make $1: 10$ dilution of 1 M NaCl solution, one part of the $\mathbf{1 \mathbf { M } \mathbf { N a C l } \text { solution, should be }}$ mixed with nine parts of water, for a total of ten parts.
- Therefore $1: 10$ dilution means $\rightarrow 1$ part of $1 \mathrm{M} \mathrm{NaCl}+9$ parts of water.

Thus:

\rightarrow if 10 ml of the $1: 10$ dilution was needed, then 1 ml of 1 M NaCl should be mixed with 9 ml of water.
\rightarrow if 100 ml of $1: 10$ dilution was needed, then 10 ml of the 1 M NaCl should be mixed with 90 ml of water.
[The final concentration of NaCl in both cases will be $0.1 \mathrm{M}(1 / 10)=0.1$]

- Example:
Volume of solute $1: 4$ dilution
1 ml from solute +3 ml from solvent $=$ Total volume 4

Example: How to prepare 2:10 dilution of solution (A) with 7 M , but the

total volume is 20 ml not 10 ml ?

$=(2 \mathrm{X} 20) / 10=4 \mathrm{ml}$
So,
So, 4 ml from solution (A) of 7 M is needed and complete volume up to 20 ml (adding 16 ml water).
Note: $[16 \mathrm{ml}$ water $=20 \mathrm{ml}-4 \mathrm{ml}]$.

How many ml of 7 M solution A we need to make $\mathbf{2 0} \mathbf{~ m l}$ of 2:10 A solution?

How to know the concentration of solution A after dilution?
Concentration of diluted solution= Initial Conc. / Dilution Factor
First we will find the DILUTION FACTOR by the following :
Dilution factor (D.F) = final volume / aliquot (initial) volume
$=20 / 4=5$
Then we will divide the stock concentration (before dilution) by the D.F:

$$
7 \mathrm{M} / 5=1.4 \mathrm{M}
$$

Note: To find out the stock concentration you will multiply the diluted concentration by the D.F

(2) Preparing dilutions by using the $\mathrm{V}_{1} \mathrm{XC}=\mathrm{V}_{2} \mathrm{XC}_{2}$ formula:

Sometimes it is necessary to use one solution to make a specific amount of a more dilute solution.

To do this the following formula can be used:
$\mathrm{V}_{1} \mathrm{X} \mathrm{C}_{1}=\mathrm{V}_{2} \mathrm{X} \mathrm{C}_{2}$

Where:

More concentrated Less concentrated

$$
\begin{aligned}
& \text { Volume }(1)=10 \mathrm{ml} \\
& \text { Concentration }(1)=4 \mathrm{M}
\end{aligned}
$$

Volume (2)= 20 ml Concentration (2) $=2 \mathrm{M}$
$>\mathbf{V}=$ Volume of starting solution needed to make the new solution (volume of stock solution)
$>\mathbf{C 1}=$ Concentration of starting solution (stock solution)
$>\mathbf{V 2}=$ Final volume of new solution
$>\mathbf{C} 2=$ Final concentration of new solution

Example: Make 5 ml of 0.25 M solution from a 1.0 M solution?

How many ml of 1 M solution we need to make 5 ml of 0.25 M solution?

$\rightarrow \mathrm{V}_{1} \mathrm{XC} \mathrm{X}_{1}=\mathrm{V}_{2} \mathrm{XC}_{2}$

Where: $\mathrm{V}_{1}=? \quad \mathrm{C}_{1}=1 \mathrm{M} \quad \mathrm{V}_{2}=5 \mathrm{ml} \quad \mathrm{C}_{2}=0.25 \mathrm{M}$

So: $\quad(\mathrm{V} 1) \times(1 \mathrm{M})=(5 \mathrm{ml}) \times(0.25 \mathrm{M})$
$\rightarrow \mathrm{V} 1=(5 \times 0.25) / 1=\mathbf{1 . 2 5} \mathbf{~ m l}$

$$
\begin{aligned}
& \text { Volume }(1)=? ? \mathrm{ml} \\
& \text { Concentration }(1)=1 \mathrm{M}
\end{aligned}
$$

$$
\text { Volume }(2)=5 \mathrm{ml}
$$

Concentration $(2)=0.25 \mathrm{M}$

So 1.25 ml of the 1 M solution is needed (starting solution) then complete the volume up to 5 ml by diluent (generally water).

(3) Serial Dilutions:

- It is a stepwise dilution of a solution, where the dilution factor is constant at each step.
- The source of dilution material for each step comes from the diluted material of the previous step.

Dilution factor (D.F) = final volume / aliquot volume $=10 / 1=10$ (for each step)

Find out the concentration of the diluted solutions:

Dilution factor (D.F) = final volume $/$ aliquot volume $=10 / 1=10$ (for each step)

From the lower concentrated solution to the higher one

From the more concentrated solution to the lower one

Example: Starting with a 2.0 M stock solution of hydrochloric acid, prepare four standard solutions by serial dilution of the following Molarity respectively $1 \mathrm{M}, 0.5 \mathrm{M}, 0.25 \mathrm{M}, 0.125 \mathrm{M}$. [with $1: 2$ dilution]?
\rightarrow Dilution factor (D.F) = final volume / aliquot volume

$$
=2 / 1=\mathbf{2} \rightarrow 1: 2
$$

-To prepare standard solution 1:
1 ml of the stock 2.0 M solution is needed and volume made up to 2 ml with distilled water (never forget to mix properly).
-To prepare standard solutions 2-4:
1 ml of the previously diluted solution is taken and volume is made up to a final volume of 2 ml by the addition of distilled water.

how to calculate the concentration of the diluted solutions if they unknown?
\rightarrow First: find the D.F:
Dilution factor $($ D.F $)=$ final volume $/$ aliquot volume $=2 / 1=\underline{\mathbf{2}}$
\rightarrow Second: divide the previous solution concentration by the D.F:

Concentration of solution $\mathbf{1}=2.0 \mathrm{M}$ stock solution $/ 2=\mathbf{1} \mathbf{M}$
Concentration of solution $2=1.0 \mathrm{M} / 2=0.5 \mathrm{M}$
Concentration of solution $3=0.5 \mathrm{M} / 2=\mathbf{0 . 2 5} \mathbf{M}$
Concentration of solution $4=0.25 / 2=\mathbf{0 . 1 2 5} \mathbf{M}$

Practical Part

Objectives:

- To get familiar with solution dilutions by different methods.

Method:

Solmuiom diinutioms:

Prepare 50 ml with $1: 20$ dilution using the 0.08 M NaOH solution you previously prepared.

- Calculation:
\rightarrow To prepare the $1: 20$ dilution $\ldots \ldots \mathrm{ml}$ of the starting solution $(0.08 \mathrm{M} \mathrm{NaOH})$ is needed and volume made up to a final volume ofml.

Method:

Prepare 100 ml of $\mathbf{0 . 2} \mathrm{M} \mathrm{HCl}$ from the previously 0.4 M HCl solution you previously prepared.

- Calculation:
\rightarrow To prepare the $0.2 \mathrm{M} \mathrm{HCl} \ldots \ldots . . \mathrm{ml}$ of the starting solution $(0.4 \mathrm{M} \mathrm{HCl})$ is needed and volume made up to a total volume ofml by adding water.

Method:

- Calculation:
\qquad
\rightarrow To prepare standard solution 1: $\ldots \ldots \ldots \mathrm{ml}$ of the stock 3.0 M solution is needed and volume made up to ml with distilled water.
\rightarrow To prepare standard solution 2-4: $\ldots \ldots . . \mathrm{ml}$ of the previously diluted solution is taken and volume is made up to a final volume of $\ldots . . \mathrm{ml}$ by the addition of distilled water.

Homework

1. A solution was prepared by taking 6 ml of a 0.22 M solution and then the volume was made up to a final volume of 30 ml . What is the concentration of the final solution?
2. How would you prepare 80 ml of a $1: 25$ dilution of a 2.1 M KCl solution? And what is the concentration of the diluted solution?
