BCH 312 [Practical]

Preparation of Different Buffer Solutions

Buffers:

- All biochemical reactions occur under <u>strict conditions</u> of the concentration of hydrogen ion.
- Biological life cannot withstand large changes in hydrogen ion concentrations which we measure as the pH.
- Those solutions that have the <u>ability to resist changes</u> in pH upon the addition of **limited amounts** of acid or base are called **BURNESS**.

Two types of buffers

A buffer is made up of a weak acid and its conjugate base.

Or

A weak base and its conjugate acid.

Acidic Buffer

Are made from weak acid and its conjugated base [its salt].

Example:

- 1. CH₃COOH / CH3COONa (pka)
- → CH3COOH (Weak acid)
- → CH3COONa (conjugated base –its salt-)
- 2. NaH_2PO_4 / Na_2HPO_4 (pka)

Basic Buffer

Are made from weak base and its conjugated acid [its salt].

Example:

- $1. NH_3 / NH_4Cl (pkb)$
- → NH₃ (Weak base)
- →NH₄Cl (conjugated acid –its salt-)

Mechanism of action:

□ How buffers can resist the change in pH?

Example using [HA/A-] buffer:

→ Where: HA is Weak acid and A- is conjugated base [its salt].

$$HA \rightleftharpoons H^+ + A^-$$

If H^+ (acid) is added to this buffer system $\rightarrow H^+$ will react with <u>conjugated base</u> \rightarrow to give <u>conjugate acid</u>.

If OH- (base) is added to this buffer system \rightarrow OH- will react with conjugated acid \rightarrow to give conjugate base and H₂O.

$$OH HA \rightleftharpoons A^- + H_2O$$

Mechanism of action

Mechanism of action cont':

■ Example:

conjugated base

CH₃COO-

conjugated acid

CH₃COOH

Buffer system:

CH₃COOH / CH₃COO

When acid [H⁺] added:

$$CH_3COO^- + H^+ \longrightarrow CH_3COOH$$

When base [OH-] added:

$$CH_3COOH + OH$$
 CH_3COO $+ H_2O$

- NOTE: It resists pH changes when it's two components are present in specific proportions.
- → Thus the buffer is effective as long <u>as it does not run out</u> of one of its components (There are enough conjugated base and conjugated acid to absorb the H⁺ ions or OH⁻ ions added to the system respectively).

Henderson-Hasselbalch equation:

It is often used to perform:

- a. To calculate the pH of the Buffer.
- b. To preparation of Buffer.

$$pH = pK_a + \log \frac{\left[A^{-}\right]}{\left[HA\right]}$$

- It relates the Ka [dissociation constant] of a weak acid, [HA] concentration of weak acid component, [A-] concentration of conjugate base [salt of the weak acid] component and the pH of the buffer.
- The equation is derived from the acid dissociation constant.

Henderson-Hasselbalch equation cont':

A buffer is best used close to its pka [to act as a good buffer the pH of the solution must be within one pH unit of the pKa].

→ The buffer capacity is optimal when the ratio of the weak acid to its salt is 1:1; that is, when pH = pKa

$$pH=pka + log 1$$

 $pH = pka + o$
 $pH = pka$

Calculating the pH:

For buffers

$$pH = pK_a + \log \frac{\left[A^{-}\right]}{\left[HA\right]}$$

For weak acid [not buffers]

$$pH = \frac{pK_a + p[HA]}{2}$$

$$p[HA] = -log [HA]$$

 $pKa = -log Ka$

For weak base [not buffers]

$$pOH = \frac{pk_b + p[OH]}{2}$$

$$p[OH] = -log [OH]$$

 $pKb = -log Kb$

Practical Part

Objectives:

- To understand the behaviour and nature of buffers solutions.
- To learn how to prepare buffers.

A) Nature of buffers:

Method:

- 1. You are provided with: 0.2M solution of CH₃COOH, 0.2M solution of CH₃COONa.
- → Determine which is the weak acid and which is the conjugated base [or its salt].
- 2. Calculate the volume that you must take from CH_3COOH and CH_3COON a to prepare the following mixtures with final **volume of the solution =20 ml**:

```
100% [HA]
75% [HA], 25% [A<sup>-</sup>]
50% [HA], 50% [A<sup>-</sup>]
25% [HA], 75% [A<sup>-</sup>]
```

- 3. Calculate the pH for each solution [pKa of $CH_3COOH = 4.76$].
- 4. Follow the table.

Calculations:

1. To Calculate the volume that you must take from CH3COOH and CH3COONa to prepare the previous mixtures with final volume of the solution =20 ml:

(A) 100% [HA]:

The final volume is 20ml, So:

$$20 \times 100\% = (20 \times 100)/100 = 20 \text{ ml}$$

→ Take 20ml of HA and measure the pH.

(B) <u>75% [HA], 25% [A⁻]:</u>

From HA=
$$20 \times 75\% = (75 \times 20) / 100 = 15 \text{ ml}$$

From
$$A^- = 20 \times 25\% = (25 \times 20)/100 = 5 \text{ ml}$$

- → Mix 15ml HA and 5 ml A⁻ and measure the pH (measured PH) note that the total volume is 20 ml [15ml +5ml =20ml]
- The same way for other mixtures ...

Note:

HA: as CH₃COOH. A-: as CH₃COONa.

Calculations cont':

2. To Calculate the pH for the previous mixtures with pKa of $CH_3COOH = 4.76$:

(A) 100% [HA]:

$$pH = (pKa + p[HA])$$
 \rightarrow $p[HA] = -log 0.2 = 0.7 \rightarrow $pH = (4.76 + 0.7)$ $= 2.73$$

(B) 75% [HA], 25% [A⁻]:

pH = pKa + log [A⁻] / [HA]
$$\rightarrow$$
 pH= 4.76 + log [A⁻]/[HA] \rightarrow [HA] = C₁ X V₁ = C₂ X V₂
=0.2 X 15 = C₂ X 20 = C2 = 0.15M

→
$$[A^-] = C_1 \times V_1 = C_2 \times V_2$$

= 0.2 × 5 = $C_2 \times 20 = C2 = 0.05 \text{ M}$

So, pH =
$$4.76 + \log 0.05/0.15 \implies pH = \underline{4.282}$$

Calculations cont':

(C) <u>50%[HA]</u>, <u>50%[A]</u>:

pH = Pka + log [A-] / [HA]
$$\Rightarrow$$
 pH= 4.76 + log [A-]/[HA] \Rightarrow [HA] = C₁ X V₁ = C₂ X V₂
=0.2 X 10 = C2 X 20 = C2 = 0.1M
 \Rightarrow [A-] = C₁ X V₁ = C₂ X V₂
= 0.2 X 10 = C₂ X 20 = C2 = 0.1 M

So, pH = $4.76 + \log 0.1/0.1 \rightarrow pH = 4.76 + 0 = 4.76$ [pH=pka]

(D) 25% [HA], 75% [A-]:

pH = pka + log [A-] / [HA]
$$\rightarrow$$
 pH= 4.76 + log [A-]/[HA] \rightarrow [HA] = C₁ X V₁ = C₂ X V₂
=0.2 X 5 = C₂ X 20 = C2 = 0.05M
 \rightarrow [A-] = C₁ X V₁ = C₂ X V₂
= 0.2 X 15 = C₂ X 20 = C2 = 0.15 M

So, pH =
$$4.76 + \log 0.15/0.05 \Rightarrow \text{pH} = \underline{5.24}$$

Result:

Solutions	HA CH ₃ COOH (ml)	A- CH ₃ COONa (ml)	Final volume (ml)	Calculated pH	Measured pH	2M HCl (ml)	Measured pH	The difference
100% [HA]			20 ml			0.1		
75% [HA], 25% [A ⁻]			20 ml			0.1		
50% [HA], 50% [A ⁻]			20 ml			0.1		
25% [HA], 75% [A ⁻]			20 ml			0.1		

B) Preparation of buffer:

You are provided with **0.2M acetic acid** and **solid sodium acetate**.

Prepare 50ml of a **0.19M acetate buffer** pH =4.86 if you know that (pKa=4.76).

Required

Calculations:

```
Solid sodium acetate [as A-].
0.2M Acetic acid [as HA].
pKa = 4.76

Provided
```

- \circ Final volume of buffer = 50ml
- \circ pH=4.86
- O Buffer concentration = 0.19 M
- Buffer Concentration = [HA] + [A-]

$$0.19 = [HA] + [A^-]$$

Calculations cont':

■ To prepare a buffer Henderson-Hasselbalch equation is used:

$$pH = pka + log [A-] / [HA]$$

First calculate the concentration of the weak acid and its conjugated base that make up the buffer with 0.19M:

Assume
$$[A^-] = y$$
 and $[HA] = 0.19 - y$

So:

$$4.86 = 4.76 + \log \frac{y}{0.19 - y}$$

$$0.1 = \log \frac{y}{0.19-y}$$
 \Rightarrow by taking the "Anti log for both sides" \Rightarrow $1.26 = \frac{y}{0.19-y}$

$$y = 1.26 x (0.19-y)$$
 \Rightarrow $y = 0.24 - 1.26 y$ \Rightarrow $y + 1.26 y = 0.24$ \Rightarrow $2.26 y = 0.24$

y=0.11 M [which is the concentration of [A-] in the buffer]

So,

$$[HA] = 0.19 - 0.11$$

$$= 0.08 \text{ M} \text{ [which is the concentration of [HA] in the buffer]}$$

Calculations cont':

To calculate the volume needed from [HA] to prepare the buffer, No. of mole of [HA] should be calculated first:

No. of mole = Molarity x Volume of solution in L =
$$0.08 \times 0.05 = 0.004$$
mole
So, M of stock = no. of mole / Volume in Liter $0.2 = 0.004 / V$

→
$$V = 0.02 L = 20 ml$$

To calculate the weight needed from [A-] to prepare the buffer, No. of mole of [A-] should be calculated first:

No. of mole = Molarity x volume of solution in L
=
$$0.11 \times 0.05 = 0.0055$$
 mole

weight in (g) of [A-] = No. of moles x MW

$$\rightarrow$$
 =0.0055 x 82 = 0.451 g

Method:

Now take 20 ml from 0.2M acetic acid and 0.451 g from solid sodium acetate and then complete the volume up to 50 ml by addition of water.

C) Testing for buffering behaviour:

- In one beaker add 10 ml of 0.19 M acetate buffer that you have prepared, and in another beaker add 10 ml of 0.2M KCl.
- Measure the pH.
- Add 0.1 ml from 2 M HCl to for both solutions.
- Measure the pH after the addition.

Solution	Measured pH	Add 2M HCl	Measured pH
0.19 M acetate buffer		0.1 ml	
0.2 M KCl		0.1 ml	