BCH312 [Practical]

Preparation of Buffer Solutions by Different Laboratory Ways

Dissociation of triprotic acid:

- **Triprotic acid** is acid that contain <u>three hydrogens ions.</u>
- □ It dissociates in solution in three steps, with three Ka values.
- **phosphoric acid** is an example of triprotic acid.
- □ It dissociates in solution as following:

$$H_{3}PO_{4} \iff H^{+} + H_{2}PO_{4}^{-} \qquad pK_{1} = 2.12$$

$$H_{2}PO_{4}^{-} \iff H^{+} + HPO_{4}^{2}^{-} \qquad pK_{2} = 7.21$$

$$HPO_{4}^{2} \iff H^{+} + PO_{4}^{3} \qquad pK_{3} = 12.30$$

Preparation of buffer by several ways:

- For example if you was asked to prepare sodium phosphate buffer [NaH₂PO₄ / Na₂HPO₄]: you can prepare it by.....
- 1. By mixing NaH_2PO_4 (conjugate acid) and Na_2HPO_4 (conjugate base) in the proper proportions.
- 2. By starting with $\underline{H_3}PO_4$ and converting it to $Na\underline{H_2}PO_4$ plus Na_2HPO_4 by adding the proper amount of NaOH.
- 3. By starting with NaH_2PO_4 and converting a portion of it to Na_2HPO_4 by adding NaOH.
- 4. By starting with Na_2HPO_4 and converting a portion of it to NaH_2PO_4 by adding a strong acid such as HCL.
- 5. By starting with Na_3PO_4 and converting it to Na_2HPO_4 plus NaH_2PO_4 by adding HCL.
- 6. By mixing Na_3PO_4 and NaH_2PO_4 in the proper proportions.

HCl 'donate H⁺'

H_3PO_4 $H_2PO_4^ HPO_4^{2-}$ PO_4^{3-}

NaOH

'accept H+'

Example:

Prepare 0.1 liters of 0.045 M sodium phosphate buffer, pH=7.5, [pKa1= 2.12, pKa2 = 7.21 and pKa3 = 12.30]:

a) From concentrated (15M) $\rm H_3PO_4$ and solution of 1.5 M NaOH .

b) From solid NaH₂PO₄ and solid NaOH.

Calculations:

1st \rightarrow Write the equations of phosphoric acid dissociation and the pKa of corresponding ones: Because phosphoric acid [H₃PO₄] is **triprotic acid** it has 3 dissociation phases so:

$$H_{3}PO_{4} \iff H^{+} + H_{2}PO_{4}^{-} \qquad pK_{1} = 2.12$$

$$H_{2}PO_{4}^{-} \iff H^{+} + HPO_{4}^{2-} \qquad pK_{2} = 7.21$$

$$HPO_{4}^{2-} \iff H^{+} + PO_{4}^{3-} \qquad pK_{3} = 12.30$$

Regardless of which method is used ,
the first step involves determine the
buffer ionic species, calculating
number of moles and amounts of the
two ionic species in the buffer.

2nd → Choose the pKa value which is near the pH value of the required buffer, to be able to know the ionic species involved in your buffer:

$H_3PO_4 \implies H^+ + H_2PO_4^-$	pK ₁ = 2.12
$H_2PO_4^{-} \xrightarrow{\leftarrow} H^+ + HPO_4^{-2}$	pK ₂ = 7.21
$HPO_4^{2} \xrightarrow{\leftarrow} H^+ + PO_4^{3}$	pK ₃ = 12.30

The pH of the required buffer [pH =7.5] is near the value of pKa2, consequently, the two major ionic species present are $H_2PO_4^{-1}$ (conjugate acid) and HPO_4^{2-} (conjugate base), with the HPO_4^{2-} predominating <u>{since the pH of the buffer is slightly basic}</u>.

Calculations cont':

 $3^{rd} \rightarrow calculate No. of moles for the two ionic species in the buffer:$

 $pH = pKa2 + log [HPO_4^{2-}] / [H_2PO_4^{-}] \rightarrow Note that : [A^{-}] = HPO_4^{2-}, [HA] = H_2PO_4^{-}$

• Since the buffer concentration is 0.045 M, so assume $[A^-] = y$, [HA] = 0.045 - y:

 $7.5 = 7.2 + \log (y / 0.045 - y)$

 $7.5-7.2 = \log (y / 0.045-y)$

 $0.3 = \log(y / 0.045 - y) \Rightarrow$ antilog for both sides $\Rightarrow 2 = (y / 0.045 - y) \Rightarrow y = 0.09 - 2 y \Rightarrow 3 y = 0.09 \Rightarrow y = 0.9/3 = 0.03M \Rightarrow \text{ conc. of } [\text{HPO}_4^{2-}] = [\text{A-}] = y$ So, conc. of $[\text{H}_2\text{PO}_4^{-}] = [\text{HA}] = 0.045 - y = 0.045 - 0.03 = 0.015 \text{ M}$

• Now find the number of mole for the two ionic species in the buffer:

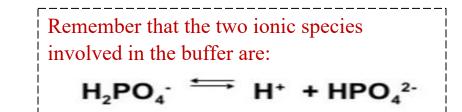
- No. of moles of = $HPO_4^{2-}(A^-) = M \times V = 0.03 \times 0.1 = 0.003$ moles.

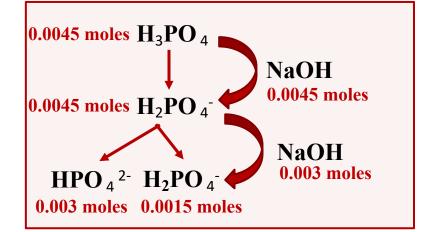
- No. of moles of $H_2PO_4^-$ (HA)= M x V = 0.015 x 0.1 = 0.0015 moles.

→ Note that Total no. of moles of phosphate buffer = $M \times V = 0.045 \times 0.1 = 0.0045$ moles. Now, to prepare the required buffer:

a) From concentrated (15M) H_3PO_4 and solution of 1.5 M NaOH .

Calculations:

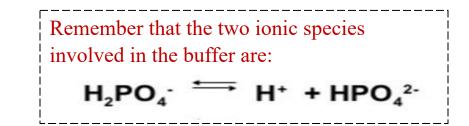

Start with 0.0045 mole of $\underline{H_3PO}_4$ add 0.0045 moles of NaOH to convert $\underline{H_3PO}_4$ completely to $\underline{H_2PO_4}^-$ (HA), then add 0.003 moles of NaOH to convert $\underline{H_2PO_4}^-$ to give $\underline{HPO_4}^{2-}$ (A⁻):

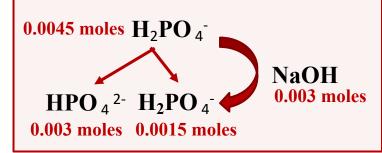

No. of moles needed of NaOH= 0.0045+0.003= <u>0.0075 moles</u>

→ Volume of NaOH needed= no.of moles / M = 0.0075/1.5 = 0.005 L = $\frac{5 \text{ ml}}{1.5}$ → Volume of H₃PO₄ needed = no.of moles / M = 0.0045/15 = 0.0003 L = $\frac{0.3 \text{ ml}}{1.5}$

So:

Add **5ml** of NaOH to the **0.3 ml** of concentrate H_3PO_4 , mix ; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH.


b) From solid NaH₂PO₄ and solid NaOH.


Calculations:

Start with 0.0045 mole of NaH₂PO₄ (HA) and add 0.003 moles of NaOH to convert NaH₂PO₄ to give Na₂HPO₄ (A⁻):

→ Weight in grams of NaH₂PO₄ needed = no.of moles x MW = 0.0045 x 119.98 = 0.54 g→ Weight in grams of NaOH needed = no. of moles x MW = 0.003 x 40 = 0.12 g

So: Dissolve the 0.548g of NaH₂PO₄ and 0.12g of NaOH in some water, mix ; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH.

Preichicel Perf

□ To learn how to prepare a buffer by different laboratory ways.

Prepare 0.1 liters of 0.045 M sodium phosphate buffer, pH=7.5,
 [pKa1= 2.12, pKa2 = 7.21 and pKa3 = 12.30]:

a) From concentrated (15M) H₃PO₄ and solution of 1.5 M NaOH :

Add **5ml** of **NaOH** to the **0.3 ml** of concentrate H_3PO_4 , mix ; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH.

b) From solid NaH₂PO₄ and solid NaOH :

Dissolve the 0.584g of NaH_2PO_4 and 0.12g of NaOH in some water, mix ; then add sufficient water to bring the final volume to 0.1 liters (100 ml), and check the pH.