Buffer Capacity

Buffers:

\square Buffer solutions are solutions that can resist changes in pH upon addition of small amounts of acid/base.
\square Common buffer mixtures contain two substances: conjugate acid and a conjugate base .
\square Together the two species (conjugate acid and conjugate base) resist large clinamges inim p Hi by absorbing the H^{+}ions or OH^{-}ions added to the system.

Buffer capacity $=$ resistance

How buffers resist the change in pH:

1. When \mathbf{H}^{+}ions are added to the buffer system they will react with the conjugate base in the buffer as following:

$$
\mathrm{H}^{+}+\mathrm{A}^{-} \longleftrightarrow \mathrm{HA}
$$

2. When $\mathbf{O H}^{-}$ions are added they will react with the conjugate acid in the buffer as following:

$$
\mathrm{OH}^{-}+\mathrm{HA} \longleftrightarrow \mathrm{~A}^{-}+\mathrm{H}_{2} \mathrm{O}
$$

\rightarrow Thus, the buffer is effective as long as it does not run out of one of its components.

Buffer Capacity (Theoretically):

- Quantitative measure of buffer resistance to pH changes is called buffer capacity.
- Buffer capacity can be defined in many ways, it can be defined as:
\rightarrow The number of moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$ions that must be added to one liter of the buffer in order to decrease /increase the pH by one unit respectively.
- The instantaneous buffer capacity is expressed as $\boldsymbol{\beta}$ and can be derived from Henderson Hasselbalch equation:

$$
\boldsymbol{\beta}=\frac{\left.2.3 \boldsymbol{K}_{\mathbf{a}}\left[\mathbf{H}^{+}\right] \mathbf{C}\right]}{\left(\boldsymbol{K}_{\mathbf{a}}+\left[\mathbf{H}^{+}\right]\right)^{\mathbf{2}}} \quad \square \quad \begin{aligned}
& \text { What the relationship between buffer } \\
& \text { capacity }(\boldsymbol{\beta}) \text { and buffer concentration }[\mathrm{C}] \text { ? } \\
& 0.1 \mathrm{M} \text { vs } 0.2 \mathrm{M} \text { acetate buffer, which buffer } \\
& \text { has the highest resistance? Why? }
\end{aligned}
$$

- Where: $\beta=$ the buffer capacity, $\left[\mathrm{H}^{+}\right]=$the hydrogen ion concentration of the buffer, $[\mathrm{C}]=$ concentration of the buffer and $\mathrm{Ka}=$ acid dissociation constant.
- Note: The buffer capacity is directly proportional to the buffer concentration

Buffer Capacity (Practical):

\square Buffer capacity of acid and alkaline direction:
\rightarrow Buffer capacity ${ }_{\mathrm{a}}\left(\mathbf{B C}_{\mathbf{a}}\right)=$ is the concentration of \mathbf{H}^{+}that must be added to decrease the pH by one unit.

This called buffer capacity in the ACID direction.

$$
\mathrm{BC}_{\mathrm{a}}=\frac{9[\mathrm{HA}]\left[\mathrm{A}^{-}\right]}{10[\mathrm{HA}]+\left[\mathrm{A}^{-}\right]}
$$

\rightarrow Buffer capacity ${ }_{\mathrm{b}}\left(\mathbf{B C}_{\mathbf{b}}\right)=$ is the concentration of $\mathbf{O H}^{-}$that must be added to increase the pH by one unit.

This called buffer capacity in the ALKAILNE direction.

$$
\mathrm{BC}_{\mathrm{b}}=\frac{9[\mathrm{HA}]\left[\mathrm{A}^{-}\right]}{10\left[\mathrm{~A}^{-}\right]+[\mathrm{HA}]}
$$

Buffer capacity in acid and base direction:

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)
$$

OH^{-}added, equilibrium position shifts to the right
$\mathrm{OH}^{-}+\mathrm{CH}_{3} \mathrm{COOH}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CH}_{3} \mathrm{COO}^{-}(a q)$

Buffer solution after addition of strong acid

Buffer capacity in acid and base direction:

Base direction
Titration of Ethanoic Acid Buffer with Sodium Hydroxide Solution

Acid direction
Titration of Ethanoic Acid Buffer with Hydrochloric Acid

Figure 6 (a) Ethanoic acid buffer with a strong base added (b) Ethanoic acid buffer with a strong acid added. The pH changes quickly once all of the available buffer is depleted.

Buffer capacity in acid and base direction:

The figure represents the buffer capacity when the buffer is titrated in both directions.

Remember:

- Buffer capacity ${ }_{\mathrm{a}}\left(\mathbf{B C}_{\mathbf{a}}\right)=$
is the concentration of \mathbf{H}^{+}that must be added to decrease the pH by one unit.
- Buffer capacity ${ }_{\mathrm{b}}\left(\mathbf{B C}_{\mathbf{b}}\right)=$
is the concentration of $\mathbf{O H}^{-}$that must be added to increase the pH by one unit.

The buffer capacity curve of 0.05 M Tricine buffer, $\mathrm{pH} 7.5(\mathrm{pKa}=8.15)$
8 Can we calculate practical buffer capacity from the graph?

Calculate the practical buffer capacity in the acid directions of a 0.1 M

and 0.2 M acetate bufer, $\mathrm{pH} 5, \mathrm{pKa}=4.76$.

First, calculate the concentration of the weak base and its conjugated acid that make up the buffer with 0.1 M :

$$
\begin{aligned}
& p H=p K a+\log \frac{[A-]}{[H A]} \rightarrow 5=4.76+\log \frac{[y]}{[0.1-y]} \rightarrow 0.24=\log \frac{[y]}{[0.1-y]} \rightarrow \text { Anti } \log \text { for both sides } \\
& 1.74=\frac{y}{0.1-y} \rightarrow \mathrm{y}=0.063 \mathrm{M} . \mathrm{SO}:[\mathrm{A}-]=0.063 \mathrm{M}, \quad[\mathrm{HA}]=0.037 \mathrm{M}
\end{aligned}
$$

Second: Calculate the practical buffer capacity in both directions

$$
\mathrm{BC}_{\mathrm{a}}=\frac{9[\mathrm{HA}][\mathrm{A}-]}{10[\mathrm{HA}]+[\mathrm{A}-]} \rightarrow \frac{9 \times 0.037 \times 0.063}{(10 \times 0.037)+0.063} \rightarrow \frac{0.021}{0.433}=0.048 \mathrm{M}\left[\mathrm{H}^{+}\right]
$$

\square Note: do the same calculation for the same buffer when its concentration equals 0.2 M .

Praciical Par\}

Objective:

\square To understand the concept of buffer capacity.
\square To determine the capacity of two acetate buffers in the acid directions.
\square You are provided $\mathbf{0 . 1} \mathbf{M}$ and $\mathbf{0 . 2} \mathbf{M}$ acetate buffer $(\mathrm{pH}=5)$.
\square In one beaker add 10 ml of the 0.1 M acetate buffer, and in the other add 0.2 M acetate buffer
\square Titrate the two beakers by adding $\mathbf{1 ~ m l}$ of $\mathbf{0 . 1} \mathbf{M ~ H C l}$ from the burette and determine the pH of the solution after each addition.
\square Continue adding the acid/base until the pH drops by two units from your initial reading
\square Record the values in the titration table.
Practical notes:
$>$ Wash all glassware with distilled water followed by washing with the solution used.
$>$ Check the flow of your burette and ensure accurate meniscus.
$>$ No need to wash electrode after each addition, since the same solutions are used.

Results:

\square Plot the capacity curve (pH against the volume (ml) of 0.1 M HCl$)$.
\square For both buffers, determine the practical buffer capacity in the acid direction from the graph and the formula then summarize your value in the table:

Acetate buffer	Practical capacity (from the formula)	Practical capacity (from the curve)
0.1 M	$0.048 \mathrm{M}[\mathrm{H}+]$	
0.2 M		

- Buffer capacity ${ }_{\mathrm{a}}\left(\mathbf{B C}_{\mathbf{a}}\right)=$ is the concentration of \mathbf{H}^{+}that must be added to decrease the pH by one unit.
\square To determine the capacity from the graph:
a) Find the ml of 0.1 M HCl needed to drop the pH one unit from the initial reading value.
b) Then find the final concentration of the HCl .

Example from the curve:

3.8 ml of 0.1 M HCl is needed to drop the pH from 3.8 to 2.8 of 10 ml of acetate buffer. Thus:
$\mathrm{C}_{1} \times \mathrm{V}_{1}=\mathrm{C}_{2} \times \mathrm{V}_{2}$
$0.1 \mathrm{M} \times 3.8 \mathrm{ml}=? \mathrm{Mx} 13.8 \mathrm{ml}$
$=0.027 \mathrm{M}\left[\mathrm{H}^{+}\right]$

Figure: 0.1 M acetate buffer capacity in the acid directions

