Tiltration curve of amino acids

Titration Curves:

- Titration Curves are produced by monitoring the pH of a given volume of a sample solution after successive addition of acid or alkali.
- The curves are usually plots of pH against the volume of titrant added (acid or base).
- Each dissociation group represent one stage in the titration curve.

Amino acid general Pormula:

\square Amino acids consist of:

1. A basic amino group $\left(-\mathrm{NH}_{2}\right)$
2. An acidic carboxyl group (-COOH)
3. A hydrogen atom (-H)
4. A distinctive side chain (-R).

Amino Acld Structure

Tittation of amino acid:

\square When an amino acid is dissolved in water it exists predominantly in the isoelectric form (Zwitterion)

\square Amino acid is an amphoteric compound \rightarrow It act as either an acid or a base (based on $\boldsymbol{p H}$):
$>$ Upon titration with acidl \rightarrow it acts as a $\underline{\text { BASE }}$ (accept a proton) \rightarrow [Fully deprotonated $\left.\mathbf{N H}_{2} \mathbf{- C H}-\mathbb{R}-\mathbf{C O O}^{-}\right]$
$>$ Upon titration with base \rightarrow it acts as an $\underline{\text { ACID }}$ (donate a proton) \rightarrow [Fully protonated $\mathbf{N H}_{3}{ }^{+} \mathbf{- C H}-\mathbb{R}-\mathbf{C O O H}$]

Titration of amino acid Cont:

\square Amino acids are example of weak acid/base which contain more than one dissociate group.
\square Examples:
(1) Alanine:
-Contain $\mathrm{COOH}\left(\mathrm{pKa}_{1}=2.34\right)$ and $\mathrm{NH}_{3}{ }^{+}\left(\mathrm{pKa}_{2}=9.69\right)$ groups (it has one pI value $\left.=6.010\right)$. [Diprotic]

- The COOH will dissociate first then $\mathrm{NH}_{3}{ }^{+}$dissociate later. (Because $\mathrm{pKa}_{1}<\mathrm{pKa}_{2}$)

Full protonated alanine

(2) Arginine:

-Contain $\mathrm{COOH}\left(\mathrm{pKa}_{1}=2.34\right), \mathrm{NH}_{3}{ }^{+}\left(\mathrm{pKa}_{2}=9.69\right)$ groups and basic group $\left(\mathrm{pKa}_{3}=12.5\right)$
(it has one pI value $=11$). [Triprotic]

Titration curve of Alanine

Titration curve of alanine or glycine [diprotic]:

[1] In starting point:

- Alanine is full protonated (since we're titrating with base) so the AA will act as a weak acid
$\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]$.

[2] COOH will dissociate first:

$\square\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]>\left[\mathrm{NH}_{3}+-\mathrm{CH}-\mathrm{CH} 3-\mathrm{COO}^{-}\right]$
$\square \mathrm{pH}<\mathrm{pKa}_{1}$.
[3] In this point the component of alanine act as buffer:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]=\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.

- $\mathrm{pH}=\mathrm{pKa}_{1}$

Titration curve of alanine or glycine [diprotic]:

[4] In this point:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]<\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\square \quad \mathrm{pH}>\mathrm{pKa}_{1}$.

[5] Isoelectric point:

\square The COOH is full dissociate to COO^{-}.
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$
$\square \quad$ Con. of -ve charge $=$ Con. of +ve charge.
$\square \quad$ The amino acid present as Zwetter ion (neutral form) .
\square Remember that: pI (isoelectric point) is the pH value at which the net charge of amino acid equal to zero.
$\square \mathrm{pI}=\left(\mathrm{pKa}_{1}+\mathrm{pKa}_{2}\right) / 2=(2.32+9.96) / 2=6.01$
[6] The $\mathbf{N H}_{3}{ }^{+}$start dissociate:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]>\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.

Titration curve of alanine or glycine [diprotic]:

[7] In this point the component of alanine act as lbuffer:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]=\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.
$\square \quad \mathrm{pH}=\mathrm{pKa}_{2}$.
[8] In this point:
$\square \quad\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]<\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.

- $\mathrm{pH}>\mathrm{pKa}_{2}$
[9] End point:
\square The alanine is full dissociated.
$\square \quad\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$(weak base form)
$\square \mathrm{pOH}=(\mathrm{pkb}+\mathrm{p}[\mathrm{A}-]) / 2$
$\rightarrow \mathrm{pKb}=\mathrm{pKw}-\mathrm{pKa}_{2}$

Calculating the pH at diflienent point of the titration curve:

The pH calculated by different way:

[1] at starting point :

$$
\mathrm{pH}=(\mathrm{pka}+\mathrm{p}[\mathrm{HA}]) / 2
$$

[2] At any point within the curve (before or in or after middle titration):

$$
\mathrm{pH}=\mathrm{pka}+\log ([\mathrm{A}-] /[\mathrm{HA}])
$$

[3] At end point:

$$
\begin{aligned}
& \mathrm{pOH}=(\mathrm{pKb}+\mathrm{P}[\mathrm{~A}-]) / 2 \\
& \mathrm{pH}=\mathrm{pKw}-\mathrm{pOH} \\
& \mathrm{pKb}=\mathrm{pKw}-\mathrm{pKa} 2
\end{aligned}
$$

Example:

Remember !!

At start of titration with acid and base together, assume that amino acid is in at its isoelectric form $\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$
\square Determine the pH value of 10 ml of 0.1 M alanine solution, titrated with $0.1 \mathrm{M} \mathrm{NaOH} / \mathrm{HCl}$ after the addition of 4 ml of 0.1 M NaOH and 1 ml of $0.1 \mathrm{M} \mathrm{HCl}, \mathrm{COOH}(\mathrm{pKa}=2.34) \mathrm{NH}_{3}{ }^{+}(\mathrm{pKa}=9.69)$
[1] pH after the addition of 4 ml of 0.1 M NaOH :

```
HA + NaOH }->\textrm{A}+\mp@subsup{\textrm{H}}{2}{}\textrm{O
So, NaOH}+\mp@subsup{\mathbf{NH}}{3}{+}->\mathbf{ NH
```

Mole of $\mathbf{H A}\left(\mathbf{N H}_{3}{ }^{+}\right)$[original] - mole of $\mathrm{A}^{-} \mathbf{(N a O H)}$ [added]
$=$ mole of $\mathbf{H A}\left(\mathbf{N H}_{3}{ }^{+}\right)$remaining.

- No. of $\mathrm{NaOH}\left[\mathrm{A}^{-}\right]$mole $=0.1 \mathrm{X} \mathrm{0.004} \mathrm{~L}=0.0004$ mole
-No. of HA mole originally $=0.1 \mathrm{X} 0.01 \mathrm{~L}=0.001$ mole -No. of HA mole remaining $=0.001-0.0004=0.0006$ mole

So,
$\mathrm{pH}=\mathrm{pKa}_{2}+\log [\mathrm{A}-] /[\mathrm{HA}]$
$\mathrm{pH}=9.69+\log [0.0004] /[0.0006]$
$\mathrm{pH}=9.52\left(\mathrm{pH}<\mathrm{pKa}_{2}\right)$
$\rightarrow\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]>\left[\mathrm{NH}_{2}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}^{-}\right]$.

[2] pH after the addition of 1 ml of 0.1 M HCl :

$\mathrm{A}^{-}+\mathrm{HCl} \rightarrow \mathrm{HA}$
$\mathrm{So}, \mathbf{H C l}+\mathbf{C O O}^{-} \rightarrow \mathbf{C O O H}$

Mole of $\mathrm{A}^{-}\left(\mathrm{COO}^{-}\right)$[original] - mole of $\mathbf{H A}(\mathbf{H C l})$ [added]
$=$ mole of $\mathrm{A}^{-}\left(\mathbf{C O O}^{-}\right)$remaining.
-No. of $\mathrm{HCl}[\mathrm{HA}]$ mole $=0.1 \mathrm{X} 0.001 \mathrm{~L}=0.0001$ mole
-No. of A- mole originally $=0.1 \mathrm{X} 0.01 \mathrm{~L}=0.001$ mole
-No. of A- mole remaining $=0.001-0.0001=0.0009$ mole

So,
$\mathrm{pH}=\mathrm{pKa}_{1}+\log [\mathrm{A}-] /[\mathrm{HA}]$
$\mathrm{pH}=2.34+\log [0.0009] /[0.0001]$
$\mathrm{pH}=3.29\left(\mathrm{pH}>\mathrm{pKa}_{1}\right)$
$\rightarrow\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COOH}\right]<\left[\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}-\mathrm{CH}_{3}-\mathrm{COO}{ }^{-}\right]$.

Praciical Pap

Objectives:

- To study titration curves of amino acid
- To use this curve to estimate the pKa values of the ionizable groups of the amino acid
- To determine pI
- To determine the buffering region
- To understand the acid base behaviour of an amino acid

Method:

- Add 10 ml of $\mathbf{0 . 1 M}$ alanine solution to a beaker
- Titrate it with $\mathbf{0 . 1} \mathbf{M} \mathbf{N a O H}$ (dropwise) then mix properly
- Recording the pH after each $\mathbf{0 . 5} \mathbf{~ m l ~ N a O H}$ added until you reach $\mathrm{pH}=11$
- Repeat the procedure with $\mathbf{0 . 1} \mathbf{~ M ~ H C l}$, and stop the titration when you reach $\mathrm{pH}=2.17$

ml of 0.1 M NaOH	pH	ml of 0.1 M HCl	
		0	
0.5		0.5	
1		1	
1.5		1.5	
2		2	
2.5		3.5	
3		3.5	
3.5		$4 \ldots$ etc	
$4 \ldots$ etc			

Results:

- Record the titration table and plot a curve of pH versus ml of titrant added.
- Calculate the pH of the alanine solution after the addition of $0 \mathrm{ml}, 5 \mathrm{ml}$, of 0.1 M NaOH , and calculate the pH after the addition of $0.5 \mathrm{ml}, 2 \mathrm{ml}$ of HCl .
- Compare the calculated pH values with those obtained from the curve.
- Determine the pKa of ionizable groups of amino acids from the curve.
- Determine the pI value from your result the curve

