KING SAUD UNIVERSITY COLLEGE OF SCIENCES DEPARTMENT OF MATHEMATICS

Mid-term Exam II / MATH-244 (Linear Algebra) / Semester 451 <u>Max. Marks: 25</u> <u>Max.Time: 1.5 hrs</u>

Note: Scientific calculators are not allowed.

Question 1: [Marks: (2+3) + 3]

- a) Let P_4 denote the vector space of all real polynomials in x with degree ≤ 4 under the usual addition and scalar multiplication. Then:
 - (i) Show that $W = \{a + 2b + (a b)x + (2a + b)x^3 + (a + b)x^4 \mid a, b \in \mathbb{R}\}$ is a subspace of P_4 .
 - (ii) Find a basis of the above vector space W.
- **b)** Let $\{u_1, u_2, ..., u_n\}$ be a basis of vector space *E*. Then show that every element of *E* has a unique representation a linear combination of the basic vectors $u_1, u_2, ..., u_n$.

Question 2: [Marks: 3 + 3 + 2]

Let $B = \{ u_1, u_2, u_3 \}$ be a basis of a vector space V and $C = \{ w_1, w_2, w_3 \} \subseteq V$ such that: $u_1 + w_2 = w_1 + w_3$ $u_2 - w_3 = w_1 + w_2$ $u_3 + w_1 = w_2 - 2w_3.$

Then:

- a) Show that the set C is a basis of the vector space V.
- **b)** Construct the transition matrix $_{C}P_{B}$ from the above basis B to the basis C.
- c) Find the transition matrix ${}_{B}P_{C}$ by using the matrix ${}_{C}P_{B}$.

Question 3: [Marks: 3 + (1.5+1.5) + 3]

- a) Let $M_2(\mathbb{R})$ the real inner product space of 2×2 matrices with the inner product: $\langle A, B \rangle := trace (AB^T)$. Let $A, B, C \in M_2(\mathbb{R})$ be the matrices satisfying A + B = -C, ||A|| = 3, ||B|| = 5 and ||C|| = 7. Then find the angle between the matrices A and B.
- b) Show that the set $F = \{(0,1,-1), (1,1,1), (2,-1,-1)\}$ is orthogonal in the Euclidean space \mathbb{R}^3 . Deduce further that the orthogonal set *F* is a basis of \mathbb{R}^3 .
- c) Let $G = \{v_1 = (1,1,-1,1), v_2 = (1,1,1,1), v_3 = (-1,1,1,1)\}$ be a basis of vector subspace E of the Euclidean space \mathbb{R}^4 . Find an orthonormal basis of E by using G.

***!