
C

Multiple Choice

1)	When 5.14 g of the hydrated magnesium sulfate $MgSO_4.xH_2O$ are heated till all its water of crystallization is driven off 2.51 g of the anhydrous $MgSO_4$ are obtained. Calculate the value of x (the number of the water molecules combined in the hydrated form).								
A	A)	7	B)	5	C)	3	D)	10	
2)	For the	e manufacture o	of Freon	-12 gas CCl ₂ F ₂	accordi	ing to:			
	$3CCl_4 + 2SbF_3 \rightarrow 3CCl_2F_2 + 2SbCl_3$								
	146.0 kg of SbF ₃ were allowed to react with 200.0 kg of CCl ₄ . After the reaction was finished, 120.0 kg of CCl ₂ F ₂ were obtained. Calculate the percentage yield of CCl ₂ F ₂ ?								
3)	A)	79%	B)	81%	C)	85%	D)	77%	
3)	Autom		s inflat	e when sodiu	m azide	e NaN ₃ decor	nposes	to its constituent	
	$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$								
	How many grams of NaN $_3$ are required to inflate an air bag by 70.0 L of N $_2$ at 35°C and 1.0 atm pressure?								
	A)	110	B)	105	C)	120	D)	100	
4)	The mass, in g, of water produced as a result of combusting 27.3 g of C ₈ H ₁₈ is:								
				$2C_8H_{18} + 25O_2$	→ 16C	$CO_2 + 18H_2O$			
\mathbb{C}	A)	30.25	B)	32.17	C)	38.75	D)	29.32	
5)	The m	nass, in g, of M	g(NO ₃) ₂	2 in 150 mL of 2	2.2 M a	queous solution	n of Mg	(NO ₃) ₂ is:	
A) _{A)}	48.95	B)	35.65	C)	25.65	D)	55.65	
6)	The mole fraction of HCl in an aqueous solution that is 36.46% HCl by mass is:								
D) A)	0.25	B)	0.31	C)	0.35	D)	0.22	
7)	For a	gas, if "P × "ounced), which	V" does	s not equal "n ollowing could	× R × be the r	T" (deviation eason:	from the	ne ideal gas law is	
$\widehat{\mathbb{B}}$	A) B) C)	the temperat	ture of the	en the gas parti he gas is very lo as is very low.	ow.				

8) The diagram on the right is a graphical presentation of which gas law? A) Boyle's law Pressure B) Charles law C) Graham's law D) Avogadro's law Volume

9) Which of the following gases effuses about two times faster than SO₂(g)?

	حل فوذج []
35	1) MgSO4·XH2O - MgSO4
	514 -> 2.51
	$\Rightarrow \text{ mass of } H_2O = 514 - 2.51 = 2.63 g$
	moles of $MgSOy = \frac{2.51}{120.3} = 0.021$ moles $\Rightarrow 1$
	moles of $H_{20} = \frac{2.63}{18} = 0.146$ moles $= 7$ 7
	Mg S04.7 H20
	(2) actual Vield = 120 Kg of CC12 F2
	Mut of $CCI_2F_2 = 12 + 35.5 \times 2 + 19 \times 2 = 121 \text{ g/mol}$ Mut of $SbF_3 = 121.8 + 19 \times 3 = 178.8 \text{ g/mol}$ Mut of $CCI_4 = 12 + 35.5 \times 4 = 154 \text{ g/mol}$
Antimony trifluoride	moles of $SbF_3 = \frac{146,000}{178.8} = 816.55$ moles moles of $CC14 = \frac{200,000}{154} = 1298.70$ moles
	The limsting reactant is SbFz from Chemical equation
	$2 \longrightarrow 3$ $816.5S \longrightarrow X = 1224.83 \text{ moles}$
4	m = Mwt. n = 121 x 1224.83 = 148203.83g = 148.20\$ Kg
	% Yield = actual Yield = 120 x 100 = 81 % []

PV=nRT V= 70 L T = 35 + 273 = 308 K P = 1 atm $n = \frac{PV}{RT} = \frac{70 \times 1}{0.082 \times 308} = 2.77 \text{ moles of } N_2$ $2 \longrightarrow 3$ X -> 2.77 moles X = 1.85 moles of Na N3 Mut of Na N3 = 23 + 14 x 3 = 65 g/mol m= n. Mut = 1.85 x 65 = 120, 25 g (4) Mut of C8H18 = 114 g/mol moles of C8H18 = 27.3 - 0.24 moles. from themical equation $0.24 \longrightarrow X = 2.16 \text{ moles.}$ m= n. Mut = 2.16 × 18 = 38.88 g (B) M- 2.2 M or 2.2 mol/2 V=150 pml = 0.150 L M- " : n- M.V = 2.2 X D. 15D = 0.33 noles_ m = n. Mut , Mut = 24.3 + (14+16x3)x2 = 148.3g/ms/ m= 0.33 × 148.3 = 48.94 g

2

$$36.46 \text{ g of HCl}$$

$$100 - 36.46 \text{ g} = 63.54 \text{ g of H2O}$$

$$moles \text{ of } HCl = 36.46 \text{ g} = 1$$

moles of
$$1420 - 63.54 = 3.53$$
 moles

$$\frac{r_1}{r_2} = \sqrt{\frac{M_2}{M_1}}$$

$$\frac{r_{\chi}}{r_{SOY}} = 2$$

$$\sqrt{\frac{M_{SOY}}{M_{X}}} = 2 \implies \sqrt{\frac{64}{M_{X}}} = 2$$

$$\frac{64}{M_X} = 4 \quad M_X = \frac{64}{4} = 16 \text{ g/msl}$$