Some Parameters \& Their Statistics:

Parameter	$\longrightarrow \quad$ Measure	Statistic or the point estimator of a parameter	$\rightarrow \quad$ Measure
μ	Mean of a single population	\bar{X}	Mean of a single sample
σ^{2}	Variance of a single population	s^{2}	Variance of a single sample
σ	Standard deviation of a single population	s	Standard deviation of a single sample
$p=\frac{D}{N}$ where D: the number of related units in population, N : population size.	Proportion of a single population	$\hat{p}=\frac{d}{n}$ where d: the number of related units in sample, n : sample size.	Proportion of a single sample
$\mu_{1}-\mu_{2}$	Difference in means of two populations	$\bar{X}_{1}-\bar{X}_{2}$	Difference in means of two samples
$p_{1}-p_{2}$	Difference in proportions of two populations	$\hat{p}_{1}-\hat{p}_{2}$	Difference in proportions of two samples
$\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}$	ratio of two variances of two populations	$\frac{s_{1}^{2}}{s_{2}^{2}}$	ratio of two variances of two samples
$\frac{\sigma_{1}}{\sigma_{2}}$	ratio of two Standard deviations of two populations	$\frac{s_{1}}{s_{2}}$	ratio of two Standard deviations of two samples

	$X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables having normal distributions with means μ and known variances $\boldsymbol{\sigma}^{\mathbf{2}}$	$X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables having normal distributions with means μ and unknown variances $\boldsymbol{\sigma}^{\mathbf{2}}$		$X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables having nonnormal distributions with means μ and variances $\boldsymbol{\sigma}^{2}$	
				unknown variances $\boldsymbol{\sigma}^{\mathbf{2}}$	known variances $\boldsymbol{\sigma}^{\mathbf{2}}$
		$n<30$	$\begin{aligned} & n \geq 30 \\ & n \rightarrow \infty \end{aligned}$	$\begin{aligned} & n \geq 30 \\ & n \rightarrow \infty \end{aligned}$	
Sampling Distribution* of statistic \bar{X}	$\begin{gathered} \bar{X} \sim N\left(\mu_{\bar{X}}=\mu, \sigma_{\bar{X}}^{2}=\frac{\sigma^{2}}{n}\right) \\ \quad \Rightarrow \frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1) \end{gathered}$ where $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$ is standard deviation of \bar{X} or standard error of \bar{X}.	$\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}} \sim t_{(n-1)}$ where $\begin{aligned} & \mu_{\bar{X}}=\mu, \\ & \hat{\sigma}_{\bar{X}}^{2}=\frac{s^{2}}{n} \end{aligned}$ estimated variance of \bar{X}, $\hat{\sigma}_{\bar{X}}=\frac{s}{\sqrt{n}}$ is estimated standard deviation of \bar{X} or estimated standard error of \bar{X}, $s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{(n-1)}$ is the variances of random sample.	$\frac{\bar{X}-\mu}{\frac{s}{\sqrt{n}}} \sim N(0,1)$ where $\begin{aligned} & \mu_{\bar{X}}=\mu, \\ & \hat{\sigma}_{\bar{X}}^{2}=\frac{s^{2}}{n} \end{aligned}$ estimated variance of \bar{X}, $\hat{\sigma}_{\bar{X}}=\frac{s}{\sqrt{n}}$ is estimated standard deviation of \bar{X} or estimated standard error of \bar{X}, $s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{(n-1)}$ is the variances of random sample.		$\begin{aligned} \bar{X} & \approx N\left(\mu_{\bar{X}}=\mu, \sigma_{\bar{X}}^{2}=\frac{\sigma^{2}}{n}\right) \\ & \Rightarrow \frac{\bar{X}-\mu}{\frac{\sigma}{\sqrt{n}}} \approx N(0,1) \end{aligned}$ where $\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$ is standard deviation of \bar{X} or standard error of \bar{X}.
```100(1-\alpha)% confidence interval (or Interval Estimation) for }```	$\mu \in \bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$   also, $\begin{aligned} & e=Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \\ & n=\left(Z_{1-\frac{\alpha}{2}} \frac{\sigma}{e}\right)^{2} . \end{aligned}$	$\mu \in \bar{X} \pm t_{v, \frac{\alpha}{2}} \frac{s}{\sqrt{n}}$   where $v=n-1 .$		$\mu \in \bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$	$\mu \in \bar{X} \pm Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$

*The probability distribution of a statistic is called a sampling distribution.

	If two independent samples of size $n_{1}$ and $n_{2}$ are drawn at random from two normal populations with means $\mu_{1}$ and $\mu_{2}$ and known variances $\boldsymbol{\sigma}_{1}^{2}$ and $\sigma_{2}^{2}$,respectively	If two independent samples of size $n_{1}$ and $n_{2}$ are drawn at random from two normal populations with means $\mu_{1}$ and $\mu_{2}$ and unknown variances $\boldsymbol{\sigma}_{1}^{2}$ and $\boldsymbol{\sigma}_{2}^{2}$ but equal, respectively		If two independent samples of size $n_{1}$ and $n_{2}$ are drawn at random from two non-normal populations with means $\mu_{1}$ and $\mu_{2}$ and variances $\sigma_{1}^{2}$ and $\sigma_{2}^{2}$, respectively	
		$n_{1}$ and $n_{2}<30$	$\begin{aligned} & n_{1} \text { and } n_{2} \geq 30 \\ & n_{1} \text { and } n_{2} \rightarrow \infty \end{aligned}$	$\begin{aligned} & n_{1} \text { and } n_{2} \geq 30 \\ & n_{1} \text { and } n_{2} \rightarrow \infty \end{aligned}$	
Sampling   Distribution* of statistic $\bar{X}_{1}-\bar{X}_{2}$	$\begin{array}{r} \bar{X}_{1}-\bar{X}_{2} \sim N\left(\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2},\right. \\ \left.\sigma_{\bar{X}_{1}-\bar{X}_{2}}^{2}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right) \\ \Rightarrow \frac{\bar{X}_{1}-\bar{X}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \sim N(0,1) \end{array}$   where $\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} .$	$\frac{\bar{X}_{1}-\bar{X}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}}} \sim t_{\left(n_{1}+n_{2}-2\right)}$   where $\begin{aligned} & \mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2}, \\ & \begin{aligned} & \hat{\sigma}_{\bar{X}_{1}-\bar{X}_{2}}=\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}=s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right), \\ & \hat{\sigma}_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{s_{p}^{2}}{n_{1}}+\frac{s_{p}^{2}}{n_{2}}} \\ &=\sqrt{s_{p}^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \\ &=s_{p} \sqrt{\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}, \\ & s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \end{aligned} \end{aligned}$   is pooled estimate of the common variance,   $s_{1}^{2}$ and $s_{2}^{2}$ are the variances of independent random samples.			$\begin{array}{r} \bar{X}_{1}-\bar{X}_{2} \approx N\left(\mu_{\bar{X}_{1}-\bar{X}_{2}}=\mu_{1}-\mu_{2},\right. \\ \left.\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}\right) \\ \Rightarrow \frac{\bar{X}_{1}-\bar{X}_{2}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}}} \approx N(0,1) \end{array}$   where $\sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} .$
$100(1-\alpha) \%$ confidence interval (or Interval Estimation) for $\mu_{1}-\mu_{2}$	$\begin{aligned} & \mu_{1}-\mu_{2} \\ & \in\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \end{aligned}$	$\begin{aligned} & \mu_{1}-\mu_{2} \\ & \in\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{v, \frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \end{aligned}$   where $v=n_{1}+n_{2}-2 .$		$\begin{aligned} & \mu_{1}-\mu_{2} \\ & \epsilon\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \end{aligned}$	$\begin{aligned} & \mu_{1}-\mu_{2} \\ & \in\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \end{aligned}$


	Paired Observations:   If two related (non-independent) samples of size $n_{1}$ and $n_{2}$ (where $n_{1}=n_{2}=n$ ) are drawn at random from two normal populations with means $\mu_{1}$ and $\mu_{2}$ and unknown variances $\boldsymbol{\sigma}_{1}^{2}$ and $\boldsymbol{\sigma}_{2}^{2}$, respectively
	$n_{1}$ and $n_{2}<30$
Sampling Distribution* of statistic	
$100(1-\alpha) \%$ confidence interval (or Interval Estimation) for $\mu_{D}=\mu_{1}-\mu_{2}$	$\mu_{D} \in \bar{D} \pm t_{v, \frac{\alpha}{2}} \frac{s_{D}}{\sqrt{n}}$   where $v=n-1 .$

*The probability distribution of a statistic is called a sampling distribution.
**

- 1-st population: $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ and with mean $\mu_{1}$
- 2-st population: $Y_{1}, Y_{2}, Y_{3}, \ldots, Y_{n}$ and with mean $\mu_{2}$.

We define the followings quantities:

- The differences (D-observations)

$$
D_{i}=X_{i}-Y_{i}, i=1,2 \ldots, n
$$

- Sample mean of the D-observations (differences)

$$
\bar{D}=\frac{\sum_{i=1}^{n} D_{i}}{n}=\frac{D_{1}+D_{2}+\cdots+D_{n}}{n}
$$

- Sample variance of the D-observations (differences)

$$
S_{D}^{2}=\frac{\sum_{i=1}^{n}\left(D_{i}-\bar{D}\right)^{2}}{n-1}
$$

- Sample standard deviation of the D-observations

$$
S_{D}=\sqrt{S_{D}^{2}}
$$

	$X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables having normal distributions with and known variances $\boldsymbol{\sigma}^{\mathbf{2}}$	
Sampling Distribution* of statistic $s^{2}$	where $s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{(n-1)}$	$\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \sim \chi_{(n-1)}^{2}$
$100(1-\alpha) \%$ confidence interval (or Interval Estimation) for $\sigma^{2}$	where $v=n-1 .$	$\frac{(n-1) s^{2}}{\chi_{v, \frac{\alpha}{2}}^{2}}<\sigma^{2}<\frac{(n-1) s^{2}}{\chi_{v, 1-\frac{\alpha}{2}}^{2}}$
$100(1-\alpha) \%$ confidence interval (or Interval Estimation) for $\sigma$	where $v=n-1$	$\sqrt{\frac{(n-1) s^{2}}{\chi_{v, \frac{\alpha}{2}}^{2}}}<\sigma<\sqrt{\frac{(n-1) s^{2}}{\chi_{v, 1-\frac{\alpha}{2}}^{2}}}$

*The probability distribution of a statistic is called a sampling distribution.

	If two independent samples of size $n_{1}$ and $n_{2}$ are drawn at random from two normal populations with known variances $\boldsymbol{\sigma}_{1}^{2}$ and $\boldsymbol{\sigma}_{2}^{2}$
Sampling Distribution* of statistic $\frac{s_{1}^{2}}{s_{2}^{2}}$	$\frac{\frac{s_{1}^{2}}{\sigma_{1}^{2}}}{\frac{s_{2}^{2}}{\sigma_{2}^{2}}}=\frac{s_{1}^{2}}{s_{2}^{2}} \frac{\sigma_{2}^{2}}{\sigma_{1}^{2}} \sim F_{\left(n_{1}-1\right),\left(n_{2}-1\right)}$   where   $s_{1}^{2}$ and $s_{2}^{2}$ are the variances of independent random samples.
$100(1-\alpha) \%$ confidence interval (or Interval Estimation) $\text { for } \frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}$	$\frac{s_{1}^{2}}{s_{2}^{2}} \frac{1}{F_{v_{1}, v_{2}, \frac{\alpha}{2}}}<\frac{\sigma_{1}^{2}}{\sigma_{2}^{2}}<\frac{s_{1}^{2}}{s_{2}^{2}} F_{v_{2}, v_{1}, \frac{\alpha}{2}}$   where $\begin{aligned} & v_{1}=n_{1}-1, \\ & v_{2}=n_{2}-1 . \end{aligned}$
$100(1-\alpha) \%$ confidence interval (or Interval Estimation) $\text { for } \frac{\sigma_{1}}{\sigma_{2}}$	$\sqrt{\frac{s_{1}^{2}}{s_{2}^{2}} \frac{1}{F_{v_{1}, v_{2}, \frac{\alpha}{2}}}}<\frac{\sigma_{1}}{\sigma_{2}}<\sqrt{\frac{s_{1}^{2}}{s_{2}^{2}} F_{v_{2}, v_{1}, \frac{\alpha}{2}}}$   where $\begin{aligned} & v_{1}=n_{1}-1 \\ & v_{2}=n_{2}-1 \end{aligned}$

*The probability distribution of a statistic is called a sampling distribution.

*The probability distribution of a statistic is called a sampling distribution.

	If two independent samples of size $n_{1}$ and $n_{2}$ are drawn at random from two populations
	$\begin{gathered} n_{1} \text { and } n_{2} \geq 30 \\ n_{1} \text { and } n_{2} \rightarrow \infty \\ \text { or } \\ n_{1} p_{1} \geq 5, n_{1}\left(1-p_{1}\right) \geq 5, n_{2} p_{2} \geq 5, \text { and } n_{2}\left(1-p_{2}\right) \geq 5 \end{gathered}$
Sampling Distribution* of statistic $\hat{p}_{1}-\hat{p}_{2}$	$\begin{gathered} \hat{p}_{1}-\hat{p}_{2} \approx N\left(\mu_{\hat{p}_{1}-\hat{p}_{2}}=p, \sigma_{\hat{p}_{1}-\hat{p}_{2}}^{2}=\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}\right) \\ \Rightarrow \frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}} \approx N(0,1) \end{gathered}$   where $\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}$   is standard deviation of $\hat{p}_{1}-\hat{p}_{2}$ or standard error of $\hat{p}_{1}-\hat{p}_{2}$.
$100(1-\alpha) \%$ confidence interval (or Interval Estimation) for $p_{1}-p_{2}$	$p_{1}-p_{2} \in\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$

*The probability distribution of a statistic is called a sampling distribution.

