GE 403

Engineering Economy Second Semester 1443 H

2022

Engineering Economic Analysis

$>\mathbf{m}=$ Investment proposal (projects A, B, C...) and we can form 2^{m} to get the alternatives, for Example, if there 4 investment proposals, we can form 16 investment alternatives ($2^{4}=16$).
$>$ Contingent: one proposal cannot be selected because it is dependent on another's alternatives.
$>$ Mutually exclusive: if there are two proposals A, B and at most one can be selected.
$>$ Beware that the "Do Nothing" is an alternative.

Example1

- Two proposals (A,B) are available for investment; list all possible combinations of proposals.

Solution
$2^{\mathrm{m}}=4$ alternatives.

Alternative	A	B
1	0	0
2	1	0
3	0	1
4	1	1

Example2

Four proposals (A, B, C and D) are available for investment, proposals A and C are mutually exclusive (cannot both be accepted), proposal B is contingent upon the acceptance of either proposal C or D , and proposal A is contingent on D . list all possible combinations of proposals and clearly show which are feasible.

Solution

Alternative	A	B	C	D	Comments
1	0	0	0	0	Feasible
2	1	0	0	0	"A" CONTINGENT ON "D"
3	0	1	0	0	"B" CONTINGENT ON "C" or " D"
4	1	1	0	0	"B" CONTINGENT ON "C" or " D"
5	0	0	1	0	Feasible
6	1	0	1	0	NOT BOTH "A" AND "C"
7	0	1	1	0	Feasible
8	1	1	1	0	NOT BOTH "A" AND "C"
9	0	0	0	1	Feasible
10	1	0	0	1	Feasible
11	0	1	0	1	Feasible
12	1	1	0	1	Feasible
13	0	0	1	1	Feasible
14	1	0	1	1	NOT BOTH "A" AND "C"
15	0	1	1	1	Feasible
16	1	1	1	1	NOT BOTH "A" AND "C"

Solution (Cont.)

There are nine feasible alternatives:
$\{$ Do nothing $\},\{\mathrm{C}\},\{\mathrm{B}, \mathrm{C}\},\{\mathrm{D}\},\{\mathrm{A}, \mathrm{D}\},\{\mathrm{B}, \mathrm{D}\},\{\mathrm{A}, \mathrm{B}, \mathrm{D}\}$, $\{C, D\},\{B, C, D\}$

