GENERAL MATHEMATICS 2

Dr. M. Alghamdi
Department of Mathematics

September 3, 2022

Chapter 3: SYSTEMS OF LINEAR EQUATIONS

Main Contents

(1) Linear Systems
(2) Solution of Linear Equations Systems
(1) Cramer's method,
(2) Gauss elimination method, and
(3) Gauss-Jordan method

Section 1: Linear Systems

Definition

A linear system of m equations in n variables $x_{1}, x_{2}, \ldots, x_{n}$ is a set of equations of the form

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\ldots+a_{3 n} x_{n} & =b_{3} \tag{1}\\
+\cdots+\cdots+\cdots+\cdots+a_{m n} x_{n} & =b_{m}
\end{align*}
$$

where $a_{i j}, b_{j} \in \mathbb{R}$ for $1 \leq i \leq m$ and $1 \leq j \leq n$.

The above system of linear equations can be written as $A X=B$ where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \text {, and } B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

A is called the coefficients matrix,
X is called the column vector of the variables (or column vector of the unknowns),
B is called the column vector of constants (or column vector of the resultants).

Section 1: Linear Systems

A special case of the linear system of equations is a system of two different variables x_{1} and x_{2} :

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

The above system of linear equations can be written as $A X=B$ where $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right], X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and $B=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$.

Section 1: Linear Systems

A special case of the linear system of equations is a system of two different variables x_{1} and x_{2} :

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

The above system of linear equations can be written as $A X=B$ where $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right], X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and $B=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$.

■ Solving Systems of Linear Equations

The following theory shows the basic condition for a system of linear equations in order to have a solution.

Theorem

Let $A X=B$ be a linear system with n equations in n variables. The system has a solution if $\operatorname{det}(A) \neq 0$.

Section 1: Linear Systems

A special case of the linear system of equations is a system of two different variables x_{1} and x_{2} :

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

The above system of linear equations can be written as $A X=B$ where $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right], X=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and $B=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$.

■ Solving Systems of Linear Equations

The following theory shows the basic condition for a system of linear equations in order to have a solution.

Theorem

Let $A X=B$ be a linear system with n equations in n variables. The system has a solution if $\operatorname{det}(A) \neq 0$.

In this chapter, we present three methods to solve the systems of linear equations $A x=B$:
(1) Cramer's method,
(2) Gauss elimination method, and
(3) Gauss-Jordan method.

Section 2: Solution of Linear Equations Systems

(1) Cramer's Method

Theorem

Let $A X=B$ be a linear system with n equations in n variables. If $\operatorname{det}(A) \neq 0$, then the unique solution to this system is

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)} \text { for every } i=1,2, \ldots, n,
$$

where A_{i} is the matrix formed by replacing the $i^{\text {th }}$ column of A by the column vector of constants B.

The matrix A_{1} is formed by replacing the first column of A by the column vector of constants B :

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], \Rightarrow A_{1}=\left[\begin{array}{cccc}
b_{1} & a_{12} & \cdots & a_{1 n} \\
b_{2} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]
$$

The matrix A_{2} is formed by replacing the second column of A by the column vector of constants B :

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], \Rightarrow A_{2}=\left[\begin{array}{cccc}
a_{11} & b_{1} & \cdots & a_{1 n} \\
a_{21} & b_{2} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & b_{n} & \cdots & a_{n n}
\end{array}\right]
$$

Section 2: Solution of Linear Equations Systems

By continuing doing so, the matrix A_{n} is formed by replacing the last column of A by the column vector of constants B :

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], \Rightarrow A_{n}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & b_{1} \\
a_{21} & a_{22} & \cdots & b_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & b_{n}
\end{array}\right]
$$

Section 2: Solution of Linear Equations Systems

By continuing doing so, the matrix A_{n} is formed by replacing the last column of A by the column vector of constants B :

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], \Rightarrow A_{n}=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & b_{1} \\
a_{21} & a_{22} & \cdots & b_{2} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & b_{n}
\end{array}\right]
$$

Remember: The determinant of 3×3 Matrices
Let A be a square matrix of order 3:

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

To calculate the determinant, choose the first row of A and multiply each of its elements by the corresponding cofactor:

$$
\begin{gathered}
\operatorname{det}(A)=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
\operatorname{det}(A)=a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right)
\end{gathered}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system of equations using Cramer's rule.

$$
\begin{aligned}
2 x+y+z & =3 \\
4 x+y-z & =-2 \\
2 x-2 y+z & =6
\end{aligned}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system of equations using Cramer's rule.

$$
\begin{aligned}
2 x+y+z & =3 \\
4 x+y-z & =-2 \\
2 x-2 y+z & =6
\end{aligned}
$$

Solution:

$$
A=\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & 1 & -1 \\
2 & -2 & 1
\end{array}\right] \Rightarrow \operatorname{det}(A)=-18
$$

$$
A_{1}=\left[\begin{array}{ccc}
3 & 1 & 1 \\
-2 & 1 & -1 \\
6 & -2 & 1
\end{array}\right] \Rightarrow \operatorname{det}\left(A_{1}\right)=-9 .
$$

$$
A_{2}=\left[\begin{array}{ccc}
2 & 3 & 1 \\
4 & -2 & -1 \\
2 & 6 & 1
\end{array}\right] \Rightarrow \operatorname{det}\left(A_{2}\right)=18
$$

$$
A_{3}=\left[\begin{array}{ccc}
2 & 1 & 3 \\
4 & 1 & -2 \\
2 & -2 & 6
\end{array}\right] \Rightarrow \operatorname{det}\left(A_{3}\right)=-54
$$

Hence,

$$
\begin{aligned}
& x=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{-9}{-18}=\frac{1}{2} \\
& y=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=\frac{18}{-18}=-1 \\
& z=\frac{\operatorname{det}\left(A_{3}\right)}{\operatorname{det}(A)}=\frac{-54}{-18}=3
\end{aligned}
$$

The column vector of the variables is $X=\left[\begin{array}{c}\frac{1}{2} \\ -1 \\ 3\end{array}\right]$.

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system of equations using Cramer's rule.

$$
\begin{aligned}
x+y+z & =12 \\
x-y & =2 \\
x-z & =4
\end{aligned}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system of equations using Cramer's rule.

$$
\begin{aligned}
x+y+z & =12 \\
x-y & =2 \\
x-z & =4
\end{aligned}
$$

$$
\begin{aligned}
& \text { Solution: } \\
& A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 0 \\
1 & 0 & -1
\end{array}\right] \Rightarrow \operatorname{det}(A)=3 \\
& A_{1}=\left[\begin{array}{ccc}
12 & 1 & 1 \\
2 & -1 & 0 \\
4 & 0 & -1
\end{array}\right] \Rightarrow \operatorname{det}\left(A_{1}\right)=18 \\
& A_{2}=\left[\begin{array}{ccc}
1 & 12 & 1 \\
1 & 2 & 0 \\
1 & 4 & -1
\end{array}\right] \Rightarrow \operatorname{det}\left(A_{2}\right)=12 \\
& A_{3}=\left[\begin{array}{ccc}
1 & 1 & 12 \\
1 & -1 & 2 \\
1 & 0 & 4
\end{array}\right] \Rightarrow \operatorname{det}\left(A_{3}\right)=6
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& x=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)}=\frac{18}{3}=6 \\
& y=\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)}=\frac{12}{3}=4 \\
& z=\frac{\operatorname{det}\left(A_{3}\right)}{\operatorname{det}(A)}=\frac{6}{3}=2
\end{aligned}
$$

The column vector of the variables is $X=\left[\begin{array}{l}6 \\ 4 \\ 2\end{array}\right]$.

Section 2: Solution of Linear Equations Systems

(2) Gauss Elimination Method

Linear Equations Systems:

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\ldots+a_{3 n} x_{n} & =b_{3} \tag{2}\\
+\cdots+\cdots+\cdots+\cdots+\cdots+a_{n n} x_{n} & =b_{n}
\end{align*}
$$

where $a_{i j}, b_{j} \in \mathbb{R}$ for $1 \leq i \leq n$ and $1 \leq j \leq n$.
The above system of linear equations can be written as $A X=B$ where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \text {, and } B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] \text {. }
$$

A is called the coefficients matrix,
X is called the column vector of the variables (or column vector of the unknowns),
B is called the column vector of constants (or column vector of the resultants).

Section 2: Solution of Linear Equations Systems

Definition

Gaussian elimination is a method for solving a linear system $A X=B$ by constructing the augmented matrix $[A \mid B]$ and transforming the matrix A to an upper triangular matrix $[C \mid D]$.

The Method:

(1) Construct the augmented matrix $[A \mid B]$:

$$
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

where A is the coefficients matrix and B is the column vector of constants.
(2) Use the elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1 :

$$
\left[\begin{array}{cccccc|c}
1 & c_{12} & c_{13} & c_{14} & \cdots & c_{1 n} & d_{1} \\
0 & 1 & c_{23} & c_{24} & \cdots & c_{2 n} & d_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & c_{(n-1) n} & d_{n-1} \\
0 & 0 & 0 & \cdots & 0 & 1 & d_{n}
\end{array}\right]
$$

(3) From the last augmented matrix, we have $x_{n}=d_{n}$ and the rest of the unknowns can be calculated by backward substitutions.

Section 2: Solution of Linear Equations Systems

$$
\begin{align*}
& C X=D \\
& {\left[\begin{array}{cccccc}
1 & c_{12} & c_{13} & \cdots & c_{1, n-1} & c_{1 n} \\
0 & 1 & c_{23} & \cdots & c_{2, n-1} & c_{2 n} \\
0 & 0 & 1 & \cdots & c_{3, n-1} & c_{3 n} \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & c_{n-1, n} \\
0 & 0 & 0 & \cdots & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
\vdots \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
\vdots \\
d_{n}
\end{array}\right]} \\
& 1 x_{1}+c_{12} x_{2}+c_{13} x_{3}+\ldots+c_{1 n} x_{n}=d_{1} \\
& 0+1 x_{2}+c_{23} x_{3}+\ldots+c_{2 n} x_{n}=d_{2} \\
& 0+0+1 x_{3}+\ldots+c_{3 n} x_{n}=d_{3} \\
& \cdots \quad+\cdots+\cdots+\cdots+\cdots=\cdots \tag{3}\\
& 0+0+0+\ldots+1 x_{n-1}+c_{n-1, n} x_{n}=d_{n-1} \\
& 0+0+0+\ldots+1 x_{n}=d_{n}
\end{align*}
$$

Section 2: Solution of Linear Equations Systems

Elementary Row Operations
(1) Replace $i^{\text {th }}$ row $\left(R_{i}\right)$ by $j^{\text {th }}$ row $\left(R_{j}\right): R_{i} \leftrightarrow R_{j}$
$\left[\begin{array}{ccc}2 & -3 & 1 \\ -1 & 5 & 2 \\ 1 & -2 & -7\end{array}\right] \xrightarrow{R_{1} \leftrightarrow \mathrm{R}_{2}}\left[\begin{array}{ccc}-1 & 5 & 2 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Elementary Row Operations
(1) Replace $i^{\text {th }}$ row $\left(R_{i}\right)$ by $j^{\text {th }}$ row $\left(R_{j}\right): R_{i} \leftrightarrow R_{j}$
$\left[\begin{array}{ccc}2 & -3 & 1 \\ -1 & 5 & 2 \\ 1 & -2 & -7\end{array}\right] \xrightarrow{R_{1} \leftrightarrow \mathrm{R}_{2}}\left[\begin{array}{ccc}-1 & 5 & 2 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right]$
(2) Multiply $i^{\text {th }}$ row $\left(R_{i}\right)$ by $\lambda: \xrightarrow{\lambda R_{i}}$
$\left[\begin{array}{ccc}-1 & 5 & 2 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right] \xrightarrow{2 R_{1}}\left[\begin{array}{ccc}-2 & 10 & 4 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Elementary Row Operations
(1) Replace $i^{\text {th }}$ row $\left(R_{i}\right)$ by $j^{\text {th }}$ row $\left(R_{j}\right): R_{i} \leftrightarrow R_{j}$
$\left[\begin{array}{ccc}2 & -3 & 1 \\ -1 & 5 & 2 \\ 1 & -2 & -7\end{array}\right] \xrightarrow{R_{1} \leftrightarrow \mathrm{R}_{2}}\left[\begin{array}{ccc}-1 & 5 & 2 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right]$
(2) Multiply $i^{\text {th }}$ row $\left(R_{i}\right)$ by $\lambda: \xrightarrow{\lambda R_{i}}$
$\left[\begin{array}{ccc}-1 & 5 & 2 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right] \xrightarrow{2 R_{1}}\left[\begin{array}{ccc}-2 & 10 & 4 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right]$.
(3) Multiply $i^{\text {th }}$ row $\left(R_{i}\right)$ by λ and add the result to $j^{\text {th }}$ row $\left(R_{j}\right): \xrightarrow{\lambda R_{i}+R_{j}}$
$[A \mid B]=\left[\begin{array}{ll|l}1 & 1 & 11 \\ 2 & 1 & 25\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{cc|c}1 & 1 & 11 \\ 0 & -1 & 3\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{aligned}
x-2 y+z & =4 \\
-x+2 y+z & =-2 \\
4 x-3 y-z & =-4
\end{aligned}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{aligned}
x-2 y+z & =4 \\
-x+2 y+z & =-2 \\
4 x-3 y-z & =-4
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ -1 & 2 & 1 & -2 \\ 4 & -3 & -1 & -4\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{aligned}
x-2 y+z & =4 \\
-x+2 y+z & =-2 \\
4 x-3 y-z & =-4
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1 .
$[A \mid B]=\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ -1 & 2 & 1 & -2 \\ 4 & -3 & -1 & -4\end{array}\right] \xrightarrow{1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ 0 & 0 & 2 & 2 \\ 4 & -3 & -1 & -4\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{aligned}
x-2 y+z & =4 \\
-x+2 y+z & =-2 \\
4 x-3 y-z & =-4
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1.

$$
[A \mid B]=\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
-1 & 2 & 1 & -2 \\
4 & -3 & -1 & -4
\end{array}\right] \xrightarrow{1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 0 & 2 & 2 \\
4 & -3 & -1 & -4
\end{array}\right] \xrightarrow{-4 R_{1}+R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 0 & 2 & 2 \\
0 & 5 & -5 & -20
\end{array}\right]
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{aligned}
x-2 y+z & =4 \\
-x+2 y+z & =-2 \\
4 x-3 y-z & =-4
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ -1 & 2 & 1 & -2 \\ 4 & -3 & -1 & -4\end{array}\right] \xrightarrow{1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ 0 & 0 & 2 & 2 \\ 4 & -3 & -1 & -4\end{array}\right] \xrightarrow{-4 R_{1}+R_{3}}\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 0 & 2 \\ 0 & 5 & -5\end{array}\right]-20.10$
$\xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ 0 & 5 & -5 & -20 \\ 0 & 0 & 2 & 2\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{aligned}
x-2 y+z & =4 \\
-x+2 y+z & =-2 \\
4 x-3 y-z & =-4
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ -1 & 2 & 1 & -2 \\ 4 & -3 & -1 & -4\end{array}\right] \xrightarrow{1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ 0 & 0 & 2 & 2 \\ 4 & -3 & -1 & -4\end{array}\right] \xrightarrow{-4 R_{1}+R_{3}}\left[\begin{array}{ccc}1 & -2 & 1 \\ 0 & 0 & 2 \\ 0 & 5 & -5\end{array}\right]-20.10$
$\xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ 0 & 5 & -5 & -20 \\ 0 & 0 & 2 & 2\end{array}\right] \xrightarrow[\frac{1}{2} R_{3}]{\frac{1}{5} R_{2}}\left[\begin{array}{ccc|c}1 & -2 & 1 & 4 \\ 0 & 1 & -1 & -4 \\ 0 & 0 & 1 & 1\end{array}\right]$.

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{aligned}
x-2 y+z & =4 \\
-x+2 y+z & =-2 \\
4 x-3 y-z & =-4
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1.

$$
\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
-4 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \left.[A \mid B]=\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
-1 & 2 & 1 & -2 \\
4 & -3 & -1 & -4
\end{array}\right] \xrightarrow{1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 0 & 2 & 2 \\
4 & -3 & -1 & -4
\end{array}\right] \xrightarrow{-4 R_{1}+R_{3}}\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 2 \\
0 & 5 & -5
\end{array}\right]-20 .\right] \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 5 & -5 & -20 \\
0 & 0 & 2 & 2
\end{array}\right] \xrightarrow[\frac{1}{2} R_{3}]{\frac{1}{5} R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 1 & -1 & -4 \\
0 & 0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{aligned}
x-2 y+z & =4 \\
-x+2 y+z & =-2 \\
4 x-3 y-z & =-4
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1.

$$
\begin{aligned}
& {[A \mid B]=\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
-1 & 2 & 1 & -2 \\
4 & -3 & -1 & -4
\end{array}\right] \xrightarrow{1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 0 & 2 & 2 \\
4 & -3 & -1 & -4
\end{array}\right] \xrightarrow{-4 R_{1}+R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 0 & 2 & 2 \\
0 & 5 & -5 & -20
\end{array}\right]} \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 5 & -5 & -20 \\
0 & 0 & 2 & 2
\end{array}\right] \xrightarrow[\frac{1}{2} R_{3}]{\frac{1}{5} R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 1 & -1 & -4 \\
0 & 0 & 1 & 1
\end{array}\right] \text {. } \\
& {\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
-4 \\
1
\end{array}\right]} \\
& \begin{aligned}
z & =1 \\
y-z & =-4 \Rightarrow y-1=-4 \Rightarrow y=-4+1=-3 \\
x-2 y+z & =4 \Rightarrow x-2(-3)+1=4 \Rightarrow x=-3
\end{aligned}
\end{aligned}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{aligned}
x-2 y+z & =4 \\
-x+2 y+z & =-2 \\
4 x-3 y-z & =-4
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1.

$$
\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
4 \\
-4 \\
1
\end{array}\right]
$$

$$
\begin{aligned}
z & =1 \\
y-z & =-4 \Rightarrow y-1=-4 \Rightarrow y=-4+1=-3 \\
x-2 y+z & =4 \Rightarrow x-2(-3)+1=4 \Rightarrow x=-3
\end{aligned}
$$

The column vector of variables is $X=\left[\begin{array}{c}-3 \\ -3 \\ 1\end{array}\right]$

$$
\begin{aligned}
& {[A \mid B]=\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
-1 & 2 & 1 & -2 \\
4 & -3 & -1 & -4
\end{array}\right] \xrightarrow{1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 0 & 2 & 2 \\
4 & -3 & -1 & -4
\end{array}\right] \xrightarrow{-4 R_{1}+R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 0 & 2 & 2 \\
0 & 5 & -5 & -20
\end{array}\right]} \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 5 & -5 & -20 \\
0 & 0 & 2 & 2
\end{array}\right] \xrightarrow[\frac{1}{2} R_{3}]{\frac{1}{5} R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 1 & 4 \\
0 & 1 & -1 & -4 \\
0 & 0 & 1 & 1
\end{array}\right] .
\end{aligned}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1 .

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1 .
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1 .
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}} \xrightarrow{-1 R_{1}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & -2 & -1 & -2\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1 .

$$
[A \mid B]=\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
1 & -1 & 2 & 0 \\
2 & 0 & 1 & 2
\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccc|c}
-1 R_{1}+R_{2}
\end{array}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & 1 \\
0 & -2 & -1
\end{array}\right)-2.2\right] \xrightarrow{-1 R_{2}+R_{3}}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & -2 & 1 & -2 \\
0 & 0 & -2 & 0
\end{array}\right]
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1 .

$$
\left.\begin{array}{l}
{[A \mid B]=\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
1 & -1 & 2 & 0 \\
2 & 0 & 1 & 2
\end{array}\right] \xrightarrow[-2 R_{1}+R_{3}]{-1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & -2 & 1 & -2 \\
0 & -2 & -1 & -2
\end{array}\right] \xrightarrow{-1 R_{2}+R_{3}}\left[\left.\begin{array}{ccc}
1 & 1 & 1 \\
0 & -2 & 1
\end{array} \right\rvert\, \begin{array}{c}
2 \\
0
\end{array} 0\right.} \\
\hline-2
\end{array}\right] .
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss elimination method.

$$
\begin{aligned}
x+y+z & =2 \\
x-y+2 z & =0 \\
2 x+z & =2
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use elementary row operations on the augmented matrix to transform the matrix A to an upper triangular matrix with a leading coefficient of each row equals 1.

$$
\left.\begin{array}{l}
{[A \mid B]=\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
1 & -1 & 2 & 0 \\
2 & 0 & 1 & 2
\end{array}\right] \xrightarrow[-2 R_{1}+R_{3}]{-1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & -2 & 1 & -2 \\
0 & -2 & -1 & -2
\end{array}\right] \xrightarrow{-1 R_{2}+R_{3}}\left[\begin{array}{ccc|c}
1 & 1 & 1 & 2 \\
0 & -2 & 1 & -2 \\
0 & 0 & -2 & 0
\end{array}\right]} \\
\xrightarrow[-\frac{1}{2} R_{3}]{-\frac{1}{2} R_{2}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 1
\end{array}\right] \\
1 \\
0
\end{array}\right] . ~ \begin{gathered}
z=0 \\
{\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & -\frac{1}{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]} \\
y-\frac{1}{2} z=1 \Rightarrow y-0=1 \Rightarrow y=1 \\
x+y+z=2 \Rightarrow x+1+0=2 \Rightarrow x=1
\end{gathered}
$$

The column vector of variables is $X=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$

Section 2: Solution of Linear Equations Systems

(3) Gauss-Jordan Method

$$
\begin{align*}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\ldots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\ldots+a_{2 n} x_{n} & =b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}+\ldots+a_{3 n} x_{n} & =b_{3} \tag{4}\\
+\cdots+\cdots+\cdots & =\cdots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+a_{n 3} x_{3}+\ldots++a_{n n} x_{n} & =b_{n}
\end{align*}
$$

where $a_{i j}, b_{j} \in \mathbb{R}$ for $1 \leq i \leq n$ and $1 \leq j \leq n$.
The above system of linear equations can be written as $A X=B$ where

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right], X=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \text {, and } B=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

A is called the coefficients matrix,
X is called the column vector of the variables (or column vector of the unknowns),
B is called the column vector of constants (or column vector of the resultants).

Section 2: Solution of Linear Equations Systems

Definition

Gauss-Jordan elimination is a method for solving a linear system $A X=B$ by constructing the augmented matrix $[A \mid B]$ and transforming the matrix A to an identity matrix $\left[I_{n} \mid D\right]$.

The Method:

(1) Construct the augmented matrix $[A \mid B]$.

$$
\left[\begin{array}{cccc|c}
a_{11} & a_{12} & \cdots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \cdots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n} & b_{n}
\end{array}\right]
$$

where A is the coefficients matrix and B is the column vector of constants.
(2) Use the elementary row operations on the augmented matrix $[A \mid B]$ to transform the matrix A to the identity matrix I_{n}.

$$
\left[\begin{array}{cccccc|c}
1 & 0 & 0 & 0 & \cdots & 0 & d_{1} \\
0 & 1 & 0 & 0 & \cdots & 0 & d_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 & d_{n-1} \\
0 & 0 & 0 & 0 & \cdots & 1 & d_{n}
\end{array}\right]
$$

(3)

From the last augmented matrix, $x_{k}=d_{k}$ for every $k=1,2, \ldots, n$.

Section 2: Solution of Linear Equations Systems

$$
\left.\right]=d_{2} .\left[\begin{array}{c}
d_{1} \\
d_{2} \\
x_{3}
\end{array}\right]=d_{3} .
$$

Section 2: Solution of Linear Equations Systems

Elementary Row Operations
(1) Replace $i^{\text {th }}$ row $\left(R_{i}\right)$ by $j^{\text {th }}$ row $\left(R_{j}\right): R_{i} \leftrightarrow R_{j}$
$\left[\begin{array}{ccc}2 & -3 & 1 \\ -1 & 5 & 2 \\ 1 & -2 & -7\end{array}\right] \xrightarrow{R_{1} \leftrightarrow \mathrm{R}_{2}}\left[\begin{array}{ccc}-1 & 5 & 2 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Elementary Row Operations
(1) Replace $i^{\text {th }}$ row $\left(R_{i}\right)$ by $j^{\text {th }}$ row $\left(R_{j}\right): R_{i} \leftrightarrow R_{j}$
$\left[\begin{array}{ccc}2 & -3 & 1 \\ -1 & 5 & 2 \\ 1 & -2 & -7\end{array}\right] \xrightarrow{R_{1} \leftrightarrow \mathrm{R}_{2}}\left[\begin{array}{ccc}-1 & 5 & 2 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right]$
(2) Multiply $i^{\text {th }}$ row $\left(R_{i}\right)$ by $\lambda: \xrightarrow{\lambda R_{i}}$

$$
\left[\begin{array}{ccc}
-1 & 5 & 2 \\
2 & -3 & 1 \\
1 & -2 & -7
\end{array}\right] \xrightarrow{2 R_{1}}\left[\begin{array}{ccc}
-2 & 10 & 4 \\
2 & -3 & 1 \\
1 & -2 & -7
\end{array}\right]
$$

Section 2: Solution of Linear Equations Systems

\square Elementary Row Operations
(1) Replace $i^{\text {th }}$ row $\left(R_{i}\right)$ by $j^{\text {th }}$ row $\left(R_{j}\right): R_{i} \leftrightarrow R_{j}$
$\left[\begin{array}{ccc}2 & -3 & 1 \\ -1 & 5 & 2 \\ 1 & -2 & -7\end{array}\right] \xrightarrow{R_{1} \leftrightarrow \mathrm{R}_{2}}\left[\begin{array}{ccc}-1 & 5 & 2 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right]$
(2) Multiply $i^{\text {th }}$ row $\left(R_{i}\right)$ by $\lambda: \xrightarrow{\lambda R_{i}}$
$\left[\begin{array}{ccc}-1 & 5 & 2 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right] \xrightarrow{2 R_{1}}\left[\begin{array}{ccc}-2 & 10 & 4 \\ 2 & -3 & 1 \\ 1 & -2 & -7\end{array}\right]$.
(3) Multiply $i^{\text {th }}$ row $\left(R_{i}\right)$ by λ and add the result to $j^{\text {th }}$ row $\left(R_{j}\right): \xrightarrow{\lambda R_{i}+R_{j}}$
$[A \mid B]=\left[\begin{array}{ll|l}1 & 1 & 11 \\ 2 & 1 & 25\end{array}\right] \xrightarrow{-2 R_{1}+R_{2}}\left[\begin{array}{cc|c}1 & 1 & 11 \\ 0 & -1 & 3\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x+y+z & =2 \\
x-y+2 z & =0 \\
2 x+z & =2
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 2 & 0 & 1 & 2\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & -2 & -1 & -2\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & -2 & -1 & -2\end{array}\right]$
$\xrightarrow{-1 R_{2}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & 0 & -2 & 0\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & -2 & -1 & -2\end{array}\right]$
$\xrightarrow{-1 R_{2}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & 0 & -2 & 0\end{array}\right] \xrightarrow[-\frac{1}{2} R_{3}]{-\frac{1}{2} R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{2} & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & -2 & -1 & -2\end{array}\right]$
$\xrightarrow{-1 R_{2}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & 0 & -2 & 0\end{array}\right] \xrightarrow[-\frac{1}{2} R_{3}]{-\frac{1}{2} R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{2} & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \xrightarrow{\frac{1}{2} R_{3}+R_{2}}\left[\begin{array}{lll|l}1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & -2 & -1 & -2\end{array}\right]$
$\xrightarrow{-1 R_{2}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & 0 & -2 & 0\end{array}\right] \xrightarrow[-\frac{1}{2} R_{3}]{-\frac{1}{2} R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{2} & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \xrightarrow{\frac{1}{2} R_{3}+R_{2}}\left[\begin{array}{lll|l}1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\xrightarrow{-1 R_{2}+R_{1}}\left[\begin{array}{lll|l}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & -2 & -1 & -2\end{array}\right]$
$\xrightarrow{-1 R_{2}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & 0 & -2 & 0\end{array}\right] \xrightarrow[-\frac{1}{2} R_{3}]{-\frac{1}{2} R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{2} & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \xrightarrow{\frac{1}{2} R_{3}+R_{2}}\left[\begin{array}{lll|l}1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\xrightarrow{-1 R_{2}+R_{1}}\left[\begin{array}{lll|l}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \xrightarrow{-1 R_{3}+R_{1}}\left[\begin{array}{lll|l}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{array}{r}
x+y+z=2 \\
x-y+2 z=0 \\
2 x+z=2
\end{array}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 1 & -1 & 2 & 0 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-1 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 2 & 0 & 1 & 2\end{array}\right] \xrightarrow{-2 R_{1}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & -2 & -1 & -2\end{array}\right]$
$\xrightarrow{-1 R_{2}+R_{3}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & -2 & 1 & -2 \\ 0 & 0 & -2 & 0\end{array}\right] \xrightarrow[-\frac{1}{2} R_{3}]{-\frac{1}{2} R_{2}}\left[\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ 0 & 1 & -\frac{1}{2} & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \xrightarrow{\frac{1}{2} R_{3}+R_{2}}\left[\begin{array}{lll|l}1 & 1 & 1 & 2 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\xrightarrow{-1 R_{2}+R_{1}}\left[\begin{array}{lll|l}1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right] \xrightarrow{-1 R_{3}+R_{1}}\left[\begin{array}{lll|l}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$.
Hence, $x=1, y=1$ and $z=0$. The column vector of variables is $X=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x-2 y+2 z & =5 \\
5 x+3 y+6 z & =57 \\
x+2 y+2 z & =21
\end{aligned}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x-2 y+2 z & =5 \\
5 x+3 y+6 z & =57 \\
x+2 y+2 z & =21
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & -2 & 2 & 5 \\ 5 & 3 & 6 & 57 \\ 1 & 2 & 2 & 21\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x-2 y+2 z & =5 \\
5 x+3 y+6 z & =57 \\
x+2 y+2 z & =21
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.

$$
[A \mid B]=\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
5 & 3 & 6 & 57 \\
1 & 2 & 2 & 21
\end{array}\right] \xrightarrow[-1 R_{1}+R_{3}]{-5 R_{1}+R_{2}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 13 & -4 & 32 \\
0 & 4 & 0 & 16
\end{array}\right]
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x-2 y+2 z & =5 \\
5 x+3 y+6 z & =57 \\
x+2 y+2 z & =21
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & -2 & 2 & 5 \\ 5 & 3 & 6 & 57 \\ 1 & 2 & 2 & 21\end{array}\right] \xrightarrow[-1 R_{1}+R_{3}]{-5 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & -2 & 2 & 5 \\ 0 & 13 & -4 & 32 \\ 0 & 4 & 0 & 16\end{array}\right] \xrightarrow{\frac{1}{4} R_{3}}\left[\begin{array}{ccc|c}1 & -2 & 2 & 5 \\ 0 & 13 & -4 & 32 \\ 0 & 1 & 0 & 4\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x-2 y+2 z & =5 \\
5 x+3 y+6 z & =57 \\
x+2 y+2 z & =21
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.
$[A \mid B]=\left[\begin{array}{ccc|c}1 & -2 & 2 & 5 \\ 5 & 3 & 6 & 57 \\ 1 & 2 & 2 & 21\end{array}\right] \xrightarrow[-1 R_{1}+R_{3}]{-5 R_{1}+R_{2}}\left[\begin{array}{ccc|c}1 & -2 & 2 & 5 \\ 0 & 13 & -4 & 32 \\ 0 & 4 & 0 & 16\end{array}\right] \xrightarrow{\frac{1}{4} R_{3}}\left[\begin{array}{ccc|c}1 & -2 & 2 & 5 \\ 0 & 13 & -4 & 32 \\ 0 & 1 & 0 & 4\end{array}\right]$
$\xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}1 & -2 & 2 & 5 \\ 0 & 1 & 0 & 4 \\ 0 & 13 & -4 & 32\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x-2 y+2 z & =5 \\
5 x+3 y+6 z & =57 \\
x+2 y+2 z & =21
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.

$$
\left.\begin{array}{l}
{[A \mid B]=\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
5 & 3 & 6 & 57 \\
1 & 2 & 2 & 21
\end{array}\right] \xrightarrow{-1 R_{1}+R_{3}}\left[\begin{array}{ccc|c}
-5 R_{1}+R_{2} \\
0 & -2 & 2 & 5 \\
0 & 4 & 0 & 16
\end{array}\right] \xrightarrow{\frac{1}{4} R_{3}}\left[\begin{array}{ccc}
1 & -2 & 2 \\
0 & 13 & -4 \\
0 & 1 & 0
\end{array}\right] 4}
\end{array}\right]
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x-2 y+2 z & =5 \\
5 x+3 y+6 z & =57 \\
x+2 y+2 z & =21
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.

$$
\begin{aligned}
& {[A \mid B]=\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
5 & 3 & 6 & 57 \\
1 & 2 & 2 & 21
\end{array}\right] \xrightarrow{-1 R_{1}+R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 13 & -4 & 32 \\
0 & 4 & 0 & 16
\end{array}\right] \xrightarrow{\frac{1}{4} R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 13 & -4 & 32 \\
0 & 1 & 0 & 4
\end{array}\right]} \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 1 & 0 & 4 \\
0 & 13 & -4 & 32
\end{array}\right] \xrightarrow{-13 R_{2}+R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 1 & 0 & 4 \\
0 & 0 & -4 & -20
\end{array}\right] \xrightarrow{-\frac{1}{4} R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 1 & 0 \\
0 & 0 & 1 & 5
\end{array}\right]
\end{aligned}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x-2 y+2 z & =5 \\
5 x+3 y+6 z & =57 \\
x+2 y+2 z & =21
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.

$\xrightarrow{2 R_{2}+R_{1}}\left[\begin{array}{lll|c}1 & 0 & 2 & 13 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 5\end{array}\right]$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x-2 y+2 z & =5 \\
5 x+3 y+6 z & =57 \\
x+2 y+2 z & =21
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.

$$
\begin{aligned}
& {[A \mid B]=\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
5 & 3 & 6 & 57 \\
1 & 2 & 2 & 21
\end{array}\right] \xrightarrow{-1 R_{1}+R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 13 & -4 & 32 \\
0 & 4 & 0 & 16
\end{array}\right] \xrightarrow{\frac{1}{4} R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 13 & -4 & 32 \\
0 & 1 & 0 & 4
\end{array}\right]} \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 1 & 0 & 4 \\
0 & 13 & -4 & 32
\end{array}\right] \xrightarrow{-13 R_{2}+R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 1 & 0 & 4 \\
0 & 0 & -4 & -20
\end{array}\right] \xrightarrow{-\frac{1}{4} R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 1 & 0 \\
0 & 0 & 1 & 5
\end{array}\right] \\
& \xrightarrow{2 R_{2}+R_{1}}\left[\begin{array}{lll|c}
1 & 0 & 2 & 13 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 5
\end{array}\right] \xrightarrow{-2 R_{3}+R_{1}}\left[\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 5
\end{array}\right]
\end{aligned}
$$

Section 2: Solution of Linear Equations Systems

Example

Solve the linear system by Gauss-Jordan elimination method.

$$
\begin{aligned}
x-2 y+2 z & =5 \\
5 x+3 y+6 z & =57 \\
x+2 y+2 z & =21
\end{aligned}
$$

Solution: Construct the augmented matrix $[A \mid B]$. Then, use the elementary row operations on the augmented matrix to transform the matrix A to the identity matrix I_{n}.

$$
\xrightarrow{2 R_{2}+R_{1}}\left[\begin{array}{lll|c}
1 & 0 & 2 & 13 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 5
\end{array}\right] \xrightarrow{-2 R_{3}+R_{1}}\left[\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 5
\end{array}\right]
$$

Hence, $x=3, y=4$ and $z=5$. The column vector of variables is $X=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right]$

$$
\begin{aligned}
& {[A \mid B]=\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
5 & 3 & 6 & 57 \\
1 & 2 & 2 & 21
\end{array}\right] \xrightarrow{-1 R_{1}+R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 13 & -4 & 32 \\
0 & 4 & 0 & 16
\end{array}\right] \xrightarrow{\frac{1}{4} R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 13 & -4 & 32 \\
0 & 1 & 0 & 4
\end{array}\right]} \\
& \xrightarrow{R_{2} \leftrightarrow R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 1 & 0 & 4 \\
0 & 13 & -4 & 32
\end{array}\right] \xrightarrow{-13 R_{2}+R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 1 & 0 & 4 \\
0 & 0 & -4 & -20
\end{array}\right] \xrightarrow{-\frac{1}{4} R_{3}}\left[\begin{array}{ccc|c}
1 & -2 & 2 & 5 \\
0 & 1 & 0 \\
0 & 0 & 1 & 5
\end{array}\right]
\end{aligned}
$$

