575 STAT Biostatistics

Text Book: Biostatistics.

Biostatistics
A Foundation for Analysis in the Health Sciences

Wayne W. Daniel | Chad L. Cross

Schedule of Assessment Tasks for Students During the Semester

Assessment
 Examination
 Week due

Proportion of Final Assessment

1 Mid-term exam
$7^{\text {th }}-12^{\text {th }}$
50\%

2
Project
$14^{\text {th }}$
10%

3
Final exam
After $15^{\text {th }}$ Week
40\%

Chapter 1: Introduction to Statistics and Data Analysis

Definition: Statistics

Statistics is a collection of methods for planning experiments, obtaining data, and then organizing, summarizing, presenting, analyzing, interpreting and drawing conclusions based on that data.

Biostatistics

When the data is obtained from the biological sciences and medicine, we use the term "biostatistics".

Types of Statistics

1- Descriptive Statistics

Descriptive Statistics are used to summarize or describe the important characteristics of a known set of data.
For example: Let us consider everyone in this room. Each one of us is a source of data. A characteristic of this data may be degree program, age, height, sex, marital status.

Types of Statistics

2- Inferential Statistics

Inferential Statistics goes beyond the description. It involves the use of sample data to make inferences about a larger set of data from which the sample was chosen.

For example: If we consider this class as a sample of KSU students and calculated the average age of the class. We could then infer that the average age of all KSU students is the same as our sample.

Population and Sample

Definition:

A population is the complete collection of elements (scores, people, measurements) to be studied.

A sample is a subcollection of elements drawn from the population.

Population and Sample

Population

(Some Unknown Parameters) Example: KSU Students
(Height Mean)
$\mathbf{N}=$ Population Size

Sample $=$ Observations

 (We calculate Some Statistics) Example: 20 Students from KSU (Sample Mean) n = Sample Size
Population Size and Sample Size

The number of elements in the population is called the population size and is denoted by N.
The number of elements in the sample is called the sample size and is denoted by n.

Notes:

- Let $X_{1}, X_{2}, \ldots, X_{N}$ be the population values (in general, they are unknown)
- Let $x_{1}, x_{2}, \ldots, x_{n}$ be the sample values (these values are known)
- Statistics obtained from the sample are used to estimate (approximate) the parameters of the population.

Why do we study and analyze

 subcollections (samples) of a population

Definition (Parameter)

It is a numerical characteristics of a population that summarize the data for the entire population. Definition (Statistic)
It is a numerical characteristics of a sample.

Definition (Variables)

A variable is a characteristic, feature or factor that varies from one individual to another in a population.

Classification of Variables

Quantitative

Variables

Qualitative
 Variables

Discrete variables

(The number of cars in a parking lot - The number of patients in a hospital)

Continuous variables

(height - weight - time it takes to get to school)

Chapter 2

Strategies for Understanding the Meaning of Data

1. Introduction:

Summarization techniques involve:

1) frequency distributions
2) descriptive measures
2. The Ordered Array:

Example: The following values represent a list of ages in a study on smoking cessation:
$5546585452694065 \quad 5358$
The ordered array is:
$40 \quad 46 \quad 52535455 \quad 5858 \quad 6569$

Grouped Data: The Frequency Distribution

To group a set of observations:

1) select a suitable set of contiguous,
2) non-overlapping intervals.

Example:The following table gives the hemoglobin level (g / dl) of a sample of 50 men.

17.0	17.7	15.9	15.2	16.2	17.1	15.7	17.3	$\underline{\mathbf{1 3 . 5}}$	16.3
14.6	15.8	15.3	16.4	13.7	16.2	16.4	16.1	$\mathbf{1 7 . 0}$	15.9
14.0	16.2	16.4	14.9	17.8	16.1	15.5	$\mathbf{1 8 . 3}$	15.8	16.7
15.9	15.3	13.9	16.8	15.9	16.3	17.4	15.0	17.5	16.1
14.2	16.1	15.7	15.1	17.4	16.5	14.4	16.3	17.3	15.8

Intervals:

$13.0-13.9,14.0-14.9,15.0-15.9,16.0-16.9,17.0-$ 17.9, 18.0-18.9

Variable $=\mathrm{X}=$ hemoglobin level (continuous, quantitative)
Sample size $=\mathrm{n}=50, \mathrm{Max}=18.3, \mathrm{Min}=13.5$

Class Interval	Tally	Frequency		
13.0-13.9	\|			3
14.0-14.9	\#\#	5		
15.0-15.9	\#\# \#\# \#\#	15		
16.0-16.9	\#\# \# \# \# \\| -	16		
$17.0-17.9$	\#\# \#	10		
18.0-18.9		1		

The grouped frequency distribution for the hemoglobin level of the 50 men is:

Class Interval (Hemoglobin level)	Frequency (no. of men)
$13.0-13.9$	3
$14.0-14.9$	5
$15.0-15.9$	15
$16.0-16.9$	16
$17.0-17.9$	10
$18.0-18.9$	1
Total	$n=50$

Notes:

1. Minimum value \in first interval.
2. Maximum value \in last interval.
3. The intervals are not overlapped.
4. Each value belongs to one, and only one, interval.
5. Total of the frequencies $=$ the sample size $=n$

Mid-Points of Class Intervals:

$$
\text { Mid noint }=\text { upper limit }+ \text { lower limit }
$$

For example, Mid-point of the 1st interval =

$$
(13.0+13.9) / 2=13.45
$$

- Mid-point of a class interval is considered as a typical (approximated) value for all values in that class interval.
- There are no gaps between true class intervals.

True Class Intervals:

- d = gap between class intervals
- d = lower limit - upper limit of the preceding class interval
- true upper limit = upper limit $+\mathrm{d} / 2$
- true lower limit = lower limit $-\mathrm{d} / 2$

Class Interval	True Class Interval	Mid-point	Frequency
$13.0-\mathbf{1 3 . 9}$	$12.95-13.95$	13.45	3
$\mathbf{1 4 . 0 - 1 4 . 9}$	$13.95-14.95$	14.45	5
$15.0-15.9$	$14.95-15.95$	15.45	15
$16.0-16.9$	$15.95-16.95$	16.45	16
$17.0-17.9$	$16.95-17.95$	17.45	10
$18.0-18.9$	$17.95-18.95$	18.45	1

Cumulative frequency (CF):

CF of the 1st class interval = frequency.
CF of a class interval $=$ frequency + CF of the preceding class interval.

Relative frequency and Percentage frequency:

Relative frequency = frequency / n
Percentage frequency $=$ Relative frequency $\times 100 \%$

Class Interval	Frequency	Cumulative Frequency	Relative Frequency	Cumulative Relative Frequency	Percentage Frequency	Cumulative Percentage Frequency
$13.0-13.9$	3	3	0.06	0.06	6%	6%
$14.0-14.9$	5	8	0.10	0.16	10%	16%
$15.0-15.9$	15	23	0.30	0.46	30%	46%
$16.0-16.9$	16	39	0.32	0.78	32%	78%
$17.0-17.9$	10	49	0.20	0.98	20%	98%
$18.0-18.9$	1	50	0.02	1.00	2%	100%

$>$ The number of people whose hemoglobin levels are between 17 and $17.9=10$
> The number of people whose hemoglobin levels are less than or equal to $15.9=23$
> The number of people whose hemoglobin levels are less than or equal to $17.9=49$
> The percentage of people whose hemoglobin levels are between 17 and $17.9=20 \%$
> The percentage of people whose hemoglobin levels are less than or equal to $14.9=16 \%$
> The percentage of people whose hemoglobin levels are less than or equal to $16.9=78 \%$

