

1

CHEM 241 Organic Chemistry II

PRE-REQUISITES COURSE; CHEM 240 CREDIT HOURS; 2 (2+0)

Syllabus

Topics to be Covered

Organic halides

Types – Physical properties - Preparation and reactions (nucleophilic substitution reactions S_N^1 and S_N^2 - elimination reactions *E*₁ and *E*₂).

Alcohols & Phenols

Nomenclature IUPAC – properties - synthesis and reactions of alcohols and phenols, their applications.

Ethers and Epoxides

Nomenclature, properties, synthesis and Reactions.

Topics to be Covered

Aldehydes and Ketones

Nomenclature, properties, synthesis and Reactions, nucleophilic addition reaction and their reactivity's and applications.

Carboxylic acids and their derivatives

Nomenclature, properties and acidities, synthesis and reactions and their applications.

Amino compounds

Nomenclature, properties-basicity, synthesis and Reactions and applications in organic synthesis via diazonioum salts derivatives.

References

- Organic Chemistry, Francis A. Carey, 6th ed., McGraw-Hill Company 2007.
- Fundamental of Organic Chemistry, T. W. Graham Solomons and Craig Fryhle, 7th ed. John Wiley&Son, New York (latest).
- Fundamental of Organic Chemistry, Pro. Hassan Al-Hazimi and Mohamed Al-Hassan, Dar Alkharigy 4th 1421H (Arabic Edition)

COURSE OBJECTIVES

Upon successful completion of this course, the student will be able to:

- Recognize the bases of the nomenclature, preparation and chemical behavior of the related functional groups: *organic halides, alcohols, phenols, ethers, epoxides, aldehydes, ketones, carboxylic acids* and *their derivatives* in addition to *amines*.
- **Describe** the mechanisms of reactions, in particular *nucleophilic*, *electrophilic substitution*, *elimination reaction* and *nucleophilic addition*.
- Outline the Scheme of the reaction including multi step reactions
- Estimate the *reactivity of organic compounds* towards electrophilic, nucleophilic substitutions and addition reactions.

Course Learning Outcomes

1. Knowledge

- **1.1** To name the different functional groups and organic compounds correctly and the types of alkyl halides.
- **1.2** To recognize the difference between $S_N^{1} \& S_N^{2}$.
- **1.3** To describe the nucleophilic substitution reaction.
- **1.4** To describe the physical and chemical properties of organic compounds.
- **1.5** To memorize the differences substitution and elimination reaction.
- **1.6** To list the difference between electrophilic and nucleophilic reactions.
- **1.7** To outline a scheme including multi step reaction.

Course Learning Outcomes

2.0 Skills

- **2.1** To estimate the reactivity of organic compounds towards electrophilic and nucleophilic substitution reactions.
- **2.2** To differentiate between substitution and elimination reactions.
- **2.3** To explain the effect of leaving group on reactivity toward substitution reaction.
- **2.4** To compare between $S_N^1 \& S_N^2$ and between E1 & E2.
- **2.5** To summarize the major requirement for substitution or elimination reaction

3.0 Competence

- **3.1** Choose the best synthetic rout for a specific organic compound.
- 3.2 Illustrate the mechanisms of nucleophilic substitution and elimination reactions.
- **3.3** Justify the reactivity of carbonyl group.
- **3.4** Develop the ability to effectively communicate scientific information in written and oral formats.
- **3.5** Show professionalism, including the ability to work in teams and apply basic ethical principles.