

بسم الله الرحمن الرحيم

King Saud University
College of Science
Department of Biochemistry

General Biochemistry (BCH 202)

Chapter 1
Course content

BCH 202 General Biochemistry

Course Symbol & No.

Credit Hours

Prerequisite

Class schedule

Class location

Examinations

: BCH 302

: 4 (3+1)

: --

: Sunday, Tuesday, Thursday

11:00 am to 11:50 am.

: 1A39 building No. 5

: Continuous Assessment Tests (CAT)

- First (15 Marks) Sun, 00/00/1441h 00/00/2019
- Second (20Marks) Tues, 00/00/1441h 00/00/2019
- Practical (25Marks)
- Final (40 Marks)

Course Objectives

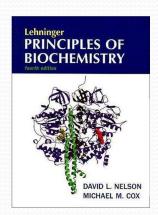
- To familiarize students with the basic biochemical knowledge necessary to meet the institutional objectives and goals for general biochemistry, like:
 - i. building blocks of cellular components
 - ii. monosaccharides, oligosaccharides and polysaccharides,
 - iii. lipids, enzymes, co-enzymes, vitamins,
 - iv. nucleic acids and
 - v. Introduction to general metabolic pathways of different macromolecules

Topic	No of Weeks	Lectures
Introduction Living matter Cell, Functional groups	1	2-4
 Carbohydrates: Function and classification: Monosaccharides structure, epimers, optical activity, solubility, cyclic structure, anomers, reducing sugars, monosaccharide derivatives. Functions of glucose, fructose and galactose Reactions of simple sugars 	1.33	5-8
 Glycosidic bonds (Types and structure) oligosaccharides: structure of disaccharides (e.g. maltose, lactose, sucrose), structure of trisaccharides polysaccharides: classification, structure and Function. Storage polysaccharides: starch. glycogen Structural Polysaccharides:, cellulose, chitin, 	1.33	9-12
• Functional polysaccharides: glycosaminoglycans and heparin. Glycoproteins and there functions: adhesion immunology, recognition Introduction to sugar metabolism	1.33	13-15

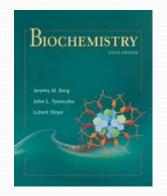
Topic	No of Weeks	Lectures
 Lipids: Definition, function, fatty acids, classification: -simple lipids: structure and function (TAG, waxes) 	1.33	16-19
-compound lipids: structure and function (phospholipids, sphingolipids) -derived lipids: structure and function (cholesterol, bile acids) Lipoproteins, micelle, membrane structure.		
 Glycerophospholipids (classifications, types& function) Sphingolipids (classifications, types& function) Triglycerides Steroids (structure, properties, & functions; cholesterol, terpenes, vitamins& steroid hormones) 	1.33	20-23
 Lipoproteins Introduction to biomembranes and adipocytes Assembly of lipid molecules (membrane and adipose tissue) Fluid mosaic model and types of membrane proteins Fat storage & mobilization in adipose tissue 	0.66	24-25 26-28
Introduction to lipid metabolism	0.33	29

	Topic	No of	Lectur			
		Weeks	es			
	• Nucleic acids:	WEERS				
	Structure of a nucleotide,					
	- types of nitrogen bases,	0.66	30-31			
	- structure of nucleosides					
	- nomenclature of nucleosides and nucleotides,					
	- phosphodiester bonds,					
	- properties of nitrogen bases,					
	- Roles of functional nucleotides					
	- Nucleotides derivatives (NAD, NADP, FAD, FMN, c AMP, c GMP)	0.66	32-33			
	rucicotides derivatives (1912), 1912, 1912, 1911, yearning e Givir)	0.00	رر -ر			
	Over view of DNA and RNA.					
	- DNA primary structure: Description and orientation of bonds.	1.66	34-38			
	- RNA: Types, role and structure.					
	- Secondary structure of DNA (double helix)					
	- Double helix properties, base pairing, reading, stabilizing forces.					
	- DNA denaturation : significance and factors					
	- Tertiary structure of DNA (relaxed, coiled and associated proteins; histones,					
	protamines).					
	Genetic code, exon and introns: Gene, genome and chromosome					
	Introduction to replication, transcription and translation and important enzymes					
	Introduction to:	1.33	39-42			
	Vitamins,		<i></i>			
	Co-enzymes,					
	Heme and minerals					
	Hormones					

Books


• Lehninger: Principles of Biochemistry

by DL. Nelson and MI. Cox (latest edition)


Biochemistry

by D. Voet and J. Voet (latest edition)

Biochemistry by Stryer (latest edition)

The Practical part of BCH 202

Topic	No of Weeks	(hour)
Safety in the laboratory	1	2
Tutorial on writing experiment reports and introduction to the most commonly used instruments in biochemistry	1	2
Buffer: titration of a weak acid, pH, pKa and buffer capacity	1	2
Determination of total of carbohydrates	1	2
Hydrolysis of amylose and quantitative estimation of glucose	1	2
General characterization and qualitative tests for lipids	1	2
Determination of the iodine number of fat	1	2
DNA characterization, absorption spectrum, 260/280 ratio, reaction with diphenylamine (Quantitative), and measuring DNA melting	2	4
RNA characterization, absorption spectrum, 260/280 ratio, reaction with Orcinol (Quantitative)	2	4