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CHAPTER 10

Rotation Motion
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10-1. Angular velocity and angular acceleration 

A compact disc rotating about a fixed axis through O

perpendicular to the plane of the figure. (a) In order

to define angular position for the disc, a fixed

reference line is chosen. A particle at P is located at a

distance r from the rotation axis at O. (b) As the

disc rotates, point P moves through an arc length s

on a circular path of radius r.

s
θ

r
Angle

The SI unit of  is radian (rad), which is a pure 

number because it is a ratio.
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π r
rev π rad

r

2
1 360 2  

rad rev1 57.3 0.159 

ONE radian is the angle subtended by an arc length equal to the raduis of the arc

The angle in rad is positive if it is counterclockwise 
with respect to the positive x axis.

f iθ θ θ  

The angular displacement is :

π
θ rad θ( ) (deg)

180




4

The average angular speed is :

f i

f i

θ θ θ
ω

t t t

 
 

 

The instantaneous angular velocity is :

t

θ d θ
ω

t d t0
lim
 


 



The SI unit of  is rad/s
The angular velocity  is positive if the rotation is counterclockwise (when 
 is increasing). 
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t

ω d ω
α

t d t0
lim
 


 



The average angular acceleration is :

f i

f i

ω ω ω
α

t t t

 
 

 

The instantaneous angular velocity is :

The SI unit of  is rad/s2

6

10-2. rotational kinematics 
Rotational Motion with Constant acceleration

Analogy between linear and angular quantities: 

a           α
 



x           θ




v           ω



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A wheel rotates with a constant angular acceleration of 3.50 rad/s2. 

(a) If the angular speed of the wheel is 2.00 rad/s at ti=0, through what angle does the wheel 

rotate in 2.00s?and (b) how many rev has done during this interval?

10.1Example 

f iθ θ ωt αt 21

2
  

 21
2.00 2.00 3.50 2.00

2
   

rev  rev
π

                  =630

11.0
1.75

2
 



(c) What is the angular speed at t=2.00 s?

f iω ω αt 
rad s2.00 3.50 2.00 9.00 /   

READ the rest of example

8

10-3. Relationship Between Angular and Linear Quantities

 The position :

 Note that for all linear-angular 
relations, we must use the radian unit. 

 The speed :

s θ r radian measure( )

d s d θ
r

d t d t


v rω radian measure( )

 The period of revolution T is 

π r
T

v

2


π
T radian measure

ω

2
( )

Flash10CH\3839Y1TSlides_Phys_103\Phys LECTURES SLIDES103 \L:



Page 5

103 Phys-CH10-Part1

Dr. Abdallah Azzeer

9

d v d ω
r

d t d t


ta rα radian measure( )

r

v
a rω radian measure

r

2
2 ( ) 

 For a particle in a circular path, the centripetal acceleration is :

 The acceleration 

 ar points radially inward

As a rigid object rotates about a fixed axis through O, the

point P experiences a tangential component of linear

acceleration at and a radial component of linear acceleration

ar. The total linear acceleration of this point is a = at + ar.

10

Differences between ar and at

 ar is known as the radial component of linear acceleration, at is known as 
the tangential component of the linear acceleration. 

 is pointed radially inward. It is non-zero even if there is no 
angular acceleration.

 is tangential to the rotational path of the particle, it is zero if the 
angular velocity is constant. 

ra rω 2

ta rα

Total linear acceleration is

   t ra a a rα rω r α ω
222 2 2 2 4     
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10.2Example 
Audio information on compact discs are transmitted digitally through the readout
system consisting of laser and lenses. The digital information on the disc are
stored by the pits and flat areas on the track. Since the speed of readout system is
constant, it reads out the same number of pits and flats in the same time interval. In
other words, the linear speed is the same no matter which track is played.

(a) Assuming the linear speed is 1.3 m/s, find the angular speed of the disc in
revolutions per minute when the inner most (r=23 mm) and outer most tracks
(r=58mm) are read.

Using the relationship between angular and 
tangential speed rv 



Page 7

103 Phys-CH10-Part1

Dr. Abdallah Azzeer

13

v  m s
ω  rad s  rev s rev

r  mm
2

3

1.3 / 1.3
56.5 / 9.00 / 5.4 10 / min

23 23 10      


 m s
ω  rad s rev

 mm
2

3

1.3 / 1.3
22.4 / 2.1 10 / min

58 58 10    


r  mm58

r  mm23

(b) The maximum playing time of a standard music CD is 74 minutes and 33 
seconds.  How many revolutions does the disk make during that time?

   i fω ω rev
ω  rev

540 210 / min
375 / min

2 2

 
  

f iθ θ ω  t rev s  s rev4375
0 / 4473 2.8 10

60
      

(c) What is the total length of the track past through the readout mechanism?

tl v t  m s  s m31.3 / 4473 5.8 10     

(d) What is the angular acceleration of the CD over the 4473 s time interval,
assuming constant ?

   f iω ω rad s
α rad s

t s
3 222.4 56.5 /

7.6 10 /
4473

 
   


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10-4. Rotational Kinetic Energy

 We treat the rigid body as a collection of

particles with different speeds, mi is the mass

of the ith particle and vi is its speed.

 The particles move with different vi but the

same .

i i

K m v m v m v

m v

2 2 21 1 1
1 1 2 2 3 32 2 2

21
2

      

 

Kinetic energy of a masslet, mi, moving 
at a tangential speed, vi, is

i i iK m v 21

2


Since a rigid body is a collection of masslets, the total 
kinetic energy of the rigid object is
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R i i i i i i i
i i i

K K m v m r ω m r ω2 2 21
2

1 1

2 2
  

     
 

   

R i i
i

K m r ω21

2
 

   
 


Since moment of Inertia, I, is defined as

i i
i

I m r 2

RK Iω
1

2


The above expression is simplified as

Rotational Kinetic Energy:

Moment of Inertia

16

10.3Example Oxygen Molecule

d = 1.21  10-10 m
mi = 2.66  10-26 kg

   i i i ii
I m r m d m d kg m

2 22 46 21 1
2 2 1.95 10     

 = 4.6  1012 rad/sec.

RK Iω J2 211
2 2.06 10  

Cf) Average linear kinetic energy at RT: 
LK Mv J2 211

2 6.02 10  
RK3

d
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10.4Example 

In a system consists of four small spheres as shown in the

figure, assuming the radii are negligible and the rods

connecting the particles are massless, compute the moment

of inertia and the rotational kinetic energy when the system

rotates about the y-axis at .

Since the rotation is about y axis, the moment of inertia 

about y axis, Iy, is

y i i
i

I m r Ma Ma m m Ma2 2 2 2 2 20 0 2       

 RK Iω M a ω M a ω2 2 2 2 21 1
2

2 2
  

18

Find the moment of inertia and rotational kinetic energy when the system rotates on the x-y plane 

about the z-axis that goes through the origin O.

 z i i
i

I m r Ma Ma mb mb Ma mb2 2 2 2 2 2 22      

   RK Iω Ma mb ω Ma mb ω2 2 2 2 2 2 21 1
2 2

2 2
    

READ THE REST OF THE EXAMPLE
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10-5. Calculation of Moment of Inertia

We defined the moment of inertia as

i i
i

I m r 2 
Moments of inertia for large objects can be computed, if we assume the 
object consists of small volume elements with mass, mi.

The moment of inertia for the large rigid object is

i
i im

i

I r m r dm2 2

0
lim
 

   
Using the volume density, , replace dm in the above 
equation with dV.

dm
ρ

dV
 dm ρdV

2mkg.UNIT; 

20

The moments of inertia becomes

I ρr dV2 

Find the moment of inertia of a uniform hoop of mass M and radius R about an axis perpendicular

to the plane of the hoop and passing through its center.

10.5Example 

The moment of inertia is

I r dm R dm MR2 2 2   

What do you notice from this result?

The moment of inertia for this object is the same 
as that of a point of mass M at the distance R.
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10.6Example 

Calculate the moment of inertia of a uniform rigid rod of length L and mass M about an axis 

perpendicular to the rod and passing through its center of mass.

The line density of the rod is  M
λ

L


so the masslet is  M
dm λdx dx

L
 

The moment of inertia is  

L
L

y L
L

x M M
I r dm dx x

L L

M L L
                  

L

M L
                

L
   

L

M
 

/ 22
/ 22 3

/ 2
/ 2

3 3

3 2

1

3

3 2 2

123 4




      

          
     
 

  
 

 
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What is the moment of inertia when the rotational axis is at one end of the rod.

   

L
L

y

x M M
I r dm dx x

L L

M M
                  L L

L L

          
M

      
L

  

'

2
2 3

0
0

3 3

2

1

3

0
3 3

3

      

    



 

Will this be the same as the above.  Why or why not?

Since the moment of inertia is resistance
to motion, it makes perfect sense for it to
be harder to move when it is rotating
about the axis at one end.
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10.7Example 

Inertia of Moment of a uniform solid cylinder

M
ρ πR l M ρ

πR l
2

2    

Density 

dI dm r ρ πr dr l r πρlr dr2 2 32 2       

R
I πρl r dr ρπlR MR3 41

20

21
22  

I MR 21
2

R

l

r

24

Moments of Inertia of Homogeneous Rigid Objects with Different Geometries
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