Basic U	uantities	and The	ir Dimei	nsion
 Dimension has nature of a qua 	s a specific intity	meaning -	it denote:	s the physical
 Dimensions are 	e denoted wi	ith square b	orackets	
– Length [L]				
– Mass [M]				
– Time [T]				
Dimensions and Units Each dimension can have many quantities	y actual units. Tab	le below for the	dimensions and	d units of some derived
Dimensions and Units Each dimension can have many quantities Dimensions and Un	y actual units. Tab nits of Four D	le below for the Perived Quar	dimensions and	d units of some derived
Dimensions and Units Each dimension can have many quantities Dimensions and Un Quantity	y actual units. Tab nits of Four D Area	le below for the Perived Quar Volume	dimensions and ntities Speed	d units of some derived Acceleration
Dimensions and Units Each dimension can have many quantities Dimensions and Un Quantity Dimensions	y actual units. Tab nits of Four D Area L ²	le below for the Perived Quar Volume L ³	dimensions and ntities Speed L/T	d units of some derived Acceleration L/T ²
Dimensions and Units Each dimension can have many quantities Dimensions and Un Quantity Dimensions SI units	y actual units. Tab nits of Four D Area L ² m ²	le below for the Derived Quar Volume L ³ m ³	dimensions and ntities Speed L/T m/s	d units of some derived Acceleration L/T ² m/s ²
Dimensions and Units Each dimension can have many quantities Dimensions and Un Quantity Dimensions SI units	y actual units. Tab nits of Four D Area L ² m ²	le below for the Derived Quar Volume L ³ m ³	dimensions and ntities Speed L/T m/s	d units of some derived Acceleration L/T ² m/s ²

Dimensional Analysis

- Technique to check the correctness of an equation or to assist in deriving an equation
- Dimensions (length, mass, time, combinations) can be treated as algebraic quantities
 - add, subtract, multiply, divide

103 Phys

- Both sides of equation must have the same dimensions
- Any relationship can be correct only if the dimensions on both sides of the equation are the same

Dr. Abdallah M.Azzeer

• Cannot give numerical factors: this is its limitation

Dimensional Analysis			
What is "Dimension" ?			
Dimension of found.	f a physical quantit	y is an algebraic combination of L, T and M from which the quantity is	
Many physica	al quantities can be	expressed in terms of a combination of fundamental dimensions	
such as			
Length	L		
Time	Т		
Mass	Μ		
• There are ph	nysical quantities w	hich are dimensionless:	
- numeric	al value		
- ratio bet	ween the same qu	antity	
- angle			
- some of	the known constan	nts like In, log, p and etc.	
		Dr. Abdallah M.Azzeer	

Dimensional Analysis		
Dimension analysis can be used to:		
a) Check whether an equation is dimensionally correct.		
However, dimensionally correct doesn't necessarily mean the equation is correct.		
b) Derive an equation.		
c) Find out dimension or units of derived quantities.		
Dr. Abdallah M.Azzeer		

Dimensional Analysis

Example:

• The period *P* of a swinging pendulum depends only on the length of the pendulum *d* and the acceleration of gravity *g*.

• Which of the following formulas for *P <u>could</u>* be correct ?

(a)
$$P = 2\pi (dg)^2$$
 (b) $P = 2\pi \frac{d}{g}$ (c) $P = 2\pi \sqrt{\frac{d}{g}}$

Given: d has units of length (L) and g has units of (L/T^2) .

Dr. Abdallah M.Azzeer

Dimensional Analysis			
• The force (F) to keep an object moving in a c	ircle can be described in terms o	of the velocity (v, dimension L/T) of	
the object, its mass (m, dimension M), and t	he radius of the circle (R, dimen	sion L).	
• Which of the following formulas for <i>F <u>cc</u></i>	o <u>uld</u> be correct ?		
(a) F = mvR	(b) $F=m(v/R)^2$ (c)	F=mv ² /R	
Remember: <i>Force</i> has dimensions of MI	L/T ²		
 There is a famous Einstein's equation analysis find which is the correct form of 	connecting energy and mass this equation :	s (relativistic). Using dimensional	
(a) E=mc	(b) E=mc ²	(c) E=mc ³	
103 Phys	bdallah M.Azzeer	11 11	

Pervious exam					
The acceleration a of expression $a = k r^n v^m$ respectively are:	a particle (k is dime	moving	g with unifor ess). Using th	m speed ∨in a e dimensional	circle of radius r is given by the analysis, the values of n and m
(a) 1, -2	(b)	-1, 2	(c) 1, 2	(d) 2, 3	(e) -2, 3
From Hooks law , F=- extended length. The	-kx , wher e dimensi	e F is th on of th	e force with e spring con	dimension of stant k is:	(MLT ⁻²), and x is spring
(a) ML ²	(b)	ML ² T ²	(c) MT ⁻²	(d) ML ⁻² T ⁻²	(e) ML ⁻² T ²

Scalars and Vectors Vocabulary:	
<u>Scalars</u> are numbers Examples: 10 r	neters 75 kilometers/hour
Vectors are numbers wi	th a direction
Example:	10 meters <i>to the right</i> 75 kilometers/hour <i>north</i>
Scalar: 25 meters Vector: 25 meters <i>north</i>	Scalar: 25 meters Vector: 25 meters <i>east</i>
More abou	vectors will be discuss later
103 Phys Dr.	Abdallah M.Azzeer 15