Basic Quantities and their Dimension

- Dimension has a specific meaning - it denotes the physical nature of a quantity
- Dimensions are denoted with square brackets
- Length [L]
- Mass [M]
- Time [T]

Dimensions and Units
Each dimension can have many actual units. Table below for the dimensions and units of some derived quantities

Dimensions and Units of Four Derived Quantities				
Quantity	Area	Volume	Speed	Acceleration
Dimensions	L^{2}	$\mathrm{~L}^{3}$	$\mathrm{~L} / \mathrm{T}$	$\mathrm{L} / \mathrm{T}^{2}$
SI units	m^{2}	$\mathrm{~m}^{3}$	$\mathrm{~m} / \mathrm{s}$	$\mathrm{m} / \mathrm{s}^{2}$

Dr. Abdallalz M.Azzeer

Dimensional Analysis

- Technique to check the correctness of an equation or to assist in deriving an equation
- Dimensions (length, mass, time, combinations) can be treated as algebraic quantities
- add, subtract, multiply, divide
- Both sides of equation must have the same dimensions
- Any relationship can be correct only if the dimensions on both sides of the equation are the same
- Cannot give numerical factors: this is its limitation

Dimensional Analysis

- What is "Dimension" ?

Dimension of a physical quantity is an algebraic combination of L, T and M from which the quantity is found.

- Many physical quantities can be expressed in terms of a combination of fundamental dimensions such as

Length	L
Time	T
Mass	M

- There are physical quantities which are dimensionless:
- numerical value
- ratio between the same quantity
- angle
- some of the known constants like \ln , \log , p and etc.

Dr. Abdallalk M.Azzeer

Dimensional Analysis

Dimension analysis can be used to:
a) Check whether an equation is dimensionally correct.

However, dimensionally correct doesn't necessarily mean the equation is correct.
b) Derive an equation.
c) Find out dimension or units of derived quantities.

Dimensional Analysis

- This is a very important tool to check your work
- It's also very easy!
- Example:

Doing a problem you get the answer for distance $d=v t^{2}$ (velocity x time ${ }^{2}$)

Quantity on left side $=L$
Quantity on right side $=L / T \times T^{2}=L \times T$

- Left units and right units don't match, so answer must be wrong !!

Dimensional Analysis

One can use dimensions only to check the validity of ones expression:
e.g: speed $[\mathrm{v}]=[\mathrm{L} / \mathrm{T}]=[\mathrm{L}]\left[\mathrm{T}^{-1}\right]$

Distance (L) traveled by a car at speed V in time T :
$\mathrm{L}=\mathrm{V} \times \mathrm{T}=[\mathrm{L} / \mathrm{T}] \times[\mathrm{T}]=\mathrm{L}$

More general expression of dimensional analysis using exponents;
e.g. $[v]=\left[L^{n} T^{m}\right] \longmapsto \frac{L}{T}=\left[L^{n} T^{m}\right]$ where $n=1$ and $m=-1$

Dimensional Analysis

Example:

- The period P of a swinging pendulum depends only on the length of the pendulum d and the acceleration of gravity g.
- Which of the following formulas for P could be correct ?
(a) $P=2 \pi(d g)^{2}$
(b) $P=2 \pi \frac{d}{g}$
(c) $P=2 \pi \sqrt{\frac{d}{g}}$

Given: d has units of length (L) and g has units of $\left(L / T^{2}\right)$.

Dimensional Analysis

Example continue...
Realize that the left hand side P has units of time (T)

- Try the first equation
(a) $P=2 \pi(d g)^{2}$
\square
$\left(L \cdot \frac{L}{T^{2}}\right)^{2}=\frac{L^{4}}{T^{4}} \neq T$
Not Right !!
(b) $P=2 \pi \frac{d}{g}$$\quad$ Not Right !!

Dimensional Analysis

Suppose the acceleration a of a circularly moving particle with speed v and radius r is proportional to r^{n} and v^{m}. What are n and m ?

$$
L^{1} T^{-2}=(L)^{n}\left(\frac{L}{T}\right)^{m}=L^{n+m} T^{-m}
$$

Dimensional Analysis

Example

The period P of a simple pendulum is the time for one complete swing. How does P depend on the mass m of the bob, the length l of the string, and the acceleration due to gravity g ? We begin by expressing the period P in terms of the other quantities as follows:

$$
P=k m^{r} I^{y} g^{z}
$$

where k is a constant and x, y, and z are to be determined.

$$
P=\left(\mathrm{M}^{x}\right)\left(\mathrm{L}^{y}\right)\left(\mathrm{L}^{\mathrm{z}} \mathrm{~T}^{-2 z}\right) \quad P=\left(\mathrm{M}^{x}\right)\left(\mathrm{L}^{y+z}\right)\left(\mathrm{T}^{-2 z}\right)
$$

These equations are easily solved and yield $\boldsymbol{x}=0, \mathbf{z}=-\frac{1}{2}, \mathbf{y}=\frac{1}{2} \begin{array}{cl}\text { M: } & 0=x \\ \mathrm{~L}: & 0=y+z\end{array}$

$$
P=k \sqrt{\frac{l}{g}}
$$

Dimensional Analysis

- The force (F) to keep an object moving in a circle can be described in terms of the velocity (v , dimension L / T) of the object, its mass (m, dimension M), and the radius of the circle (R, dimension L).
- Which of the following formulas for Fcould be correct ?
(a) $F=m v R$
(b) $F=m(v / R)^{2}$
(c) $F=m v^{2} / R$

Remember: Force has dimensions of ML/T²

- There is a famous Einstein's equation connecting energy and mass (relativistic). Using dimensional analysis find which is the correct form of this equation :
(a) $E=m c$
(b) $E=m c^{2}$
(c) $E=m c^{3}$

Pervious exam

The acceleration a of a particle moving with uniform speed v in a circle of radius r is given by the expression $a=k r^{n} v^{m}$ (k is dimensionless). Using the dimensional analysis, the values of n and m respectively are:
(a) $1,-2$
(b) $-1,2$
(c) 1,2
(d) 2,3
(e) $-2,3$

From Hooks law, $F=-k x$, where F is the force with dimension of $\left(\mathrm{MLT}^{-2}\right)$, and x is spring extended length. The dimension of the spring constant k is:
(a) $M L^{2}$
(b) $\mathrm{ML}^{2} \mathrm{~T}^{2}$
(c) MT^{-2}
(d) $\mathrm{ML}^{-2} \mathrm{~T}^{-2}$
(e) $\mathrm{ML}^{-2} \mathrm{~T}^{2}$

Review of Trigonometry
 For right triangles only!
 $\sin \theta=O / H$
 $\cos \theta=A / H$

 $\tan \theta=0 / \mathrm{A}$
 Pythagorean Theorem
 SOHCAHTOA

Scalars and Vectors

Vocabulary:
Scalars are numbers
Examples: 10 meters
75 kilometers/hour
Vectors are numbers with a direction
Example: 10 meters to the right
75 kilometers/hour north

Scalar: 25 meters
Vector: 25 meters north

Scalar: 25 meters
Vector: 25 meters east

More about vectors will be discuss later

