Introduction to Mechanics

What is Mechanics ?

The study of the motion of objects (through Equations), and the related concepts of force and energy, form the field called mechanics.

Kinematics

Kinematics : the description of how objects move.
\rightarrow Kinematics in one dimension: describing an object that moves along a straight line path, which is one dimensional motion.
\rightarrow Kinematics in two dimensions : the description of the motion of objects that move in paths in two (or three) dimensions.

Dynamics

Dynamics: deals with force and why objects move as they do. In this part we will solve the following questions:
\rightarrow What makes an object at rest begin to move?
\rightarrow What causes a body to accelerate or decelerate ?
\rightarrow What is involved when an object moves in a circle ?

We can answer in each case that a FORCE is required.

Kinematics - Terms and Concepts

Some important terms which you must know!
$>$ Reference Frames
$>$ Displacement
\rightarrow Distance
\Rightarrow Speed
> Average Velocity
$>$ Instantaneous Velocity
\rightarrow Average Acceleration
\rightarrow Instantaneous Acceleration

1. Reference Frames

Any measurement of position, distance or speed must be made with respect to a frame of reference.

اختبار فصلي واحد فقط حضوريا من 21:30 الى23:30 مساء				
		安北		
Dav	,	\%	\%	\%
Wen	103	06-04-2022	05-9-1443	الأربعاء

| فيز 103 | فيز $1443 / 9 / 5$
 م 2022/4/6 |
| :---: | :---: | :---: |

أهمية وجهة النظر إن ما يلاحظه كل منا يعتمد على وجهة نظره فمثلاً : نفترض عرية قطار تسير بسرعة ثابتة مقدارها / m 3 في إتجاه الشمال وبداخل هذه العربة رجل يقذف كرة بسرعة ثابتة مقدارها الإجابة على هذا السؤال قد تكون سهلة ولكن ليس هناك إجابة واحدة كيف؟ الإجابة الصحيحة تعتمد على مرجع معين أو راصد...... فهناك إجابتين: بإتجاه الشمال ال
103 Phys Dr. Abdallah M.Ayzeer

Reference Frames, Coordinate Systems

- Every measurement must be made with respect to a reference frame.
- Usually, speed is relative to the Earth.
- When specifying speed, always specify the frame of reference unless its obvious ("with respect to the Earth").
- Distances are also measured in a reference frame.
- When specifying speed or distance, we also need to specify DIRECTION.

Coordinate Axes

- Define reference frame using a standard coordinate axes.
- 2 Dimensions (\mathbf{x}, y)
- Note, if its convenient, could reverse $+\&-$!
- 3 Dimensions ($\mathbf{x}, \mathrm{y}, \mathrm{z}$)

- Define direction using these.
- For inclined plane problems (later), tilted axes will be used (for convenience!):

Distance and Displacement

Distance:
The length of the actual path or total path length
Example,
Jeddah is $\sim 1000 \mathrm{~km}$ away from Arriyadh.
Displacement:
The change in position of the object.
$\Delta x=x_{f}-x_{i}, \Delta x$ means the change in x (position) which is the displacement.
A vector quantity

Distance Vs Displacement

Example:

A person walking 70 m to the east and then turning around and walking back (west) a distance of 30 m .

Total distance $=100 \mathrm{~m}$
Displacement $=x_{f}-x_{i}=70 \mathrm{~m}-30 \mathrm{~m}=40 \mathrm{~m}$

Average Speed:
Average Speed is defined as the distance travelled along its path divided by the time it takes to travel this distance,

It is a scalar quantity, with unit $\left(\mathrm{ms}^{-1}\right)$
Average Velocity
Average velocity is defined as the displacement divided by the elapsed time
average velocity $\bar{v}=\frac{\text { displacement }}{\text { time elapsed }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}$

It is a vector quantity, with unit $\left(\mathrm{ms}^{-1}\right)$

Instantaneous Velocity:
The instantaneous velocity is the velocity at any instant of time. In general the instantaneous velocity at any moment is defined as the average velocity over an infinitesimally short time interval.

Instantaneous velocity is the derivative of \boldsymbol{x} with respect to $\boldsymbol{t}, \boldsymbol{d} \boldsymbol{x} / \boldsymbol{d t}$.
Velocity is the slope of a position-time graph!

103 Phys

Example 2.3

A particle moves along the x-axis. Its coordinate varies with time according to the expression

$$
x=-(4 m / s) \cdot t+(2 m / s) \cdot t^{2}
$$

A. Determine the displacement of the particle in the time intervals $t=0$ to $t=1 \mathrm{~s}$ and $\mathrm{t}=1 \mathrm{~s}$ to $\mathrm{t}=3 \mathrm{~s}$.
B. Calculate the average velocity during these two time interval.
C. Find the instantaneous velocity of the particle at $\mathrm{t}=2.5 \mathrm{~s}$.
D. What is the instantaneous velocity at 1 s (graph).

(a) $x(t=0)=0$

$$
x(t=1)=-4+2=-2 \mathrm{~m}
$$

$\Delta x=x_{2}-x_{1}=-2-0=-2 \mathrm{~m}$

$$
x(t=3)=-4 \times 3+2 \times 9=6 \mathrm{~m}
$$

$\Delta x=x_{2}-x_{1}=6-(-2)=8 \mathrm{~m}$
(b) $\bar{v}=\Delta \mathrm{x} / \Delta \mathrm{t}=-2 / 1=-2 \mathrm{~m} / \mathrm{s}$ $\bar{v}=\Delta x / \Delta t=8 / 2=4 \mathrm{~m} / \mathrm{s}$
(c) $v(t)=d x / d t=-4+2(2) t$ for $t=2.5 \mathrm{~s} \quad v=6 \mathrm{~m} / \mathrm{s}$
(d) $v(t)=d x / d t=-4+2(2) t$ $v(t=1)=0 \mathrm{~m} / \mathrm{s}$

```
Example: Velocity
    Assume the earth is in circular orbit about the sun, moving at a constant
    speed. What are the earth's
    i) average velocity
    ii) average speed
    iii) instantaneous velocity?
    Given that the radius of the earth's orbit is 1.5X1011 m
Solution:
\[
\text { i) average velocity } \quad \begin{aligned}
\bar{v} & =\frac{\text { displacement }}{\text { time elapsed }}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}} \\
& =\frac{0}{T}=0 \mathrm{~ms}^{-1}
\end{aligned}
\]
```

because, in one full cycle, the displacement of earth from original point is zero (earth reaches the initial point again)

ACCELERATION

Average Acceleration:

Acceleration specifies how rapidly the velocity of an object is changing. Average acceleration is defined as the change in velocity divided by the time taken to make this change

(a)

(b)

Instantaneous Acceleration:

The instantaneous acceleration is the acceleration at any instant of time. In general the instantaneous acceleration at any moment is defined as the average acceleration over an infinitesimally short time interval

Because $\boldsymbol{v}_{\boldsymbol{x}}=\mathbf{d x} / \mathbf{d} \boldsymbol{t}$, the acceleration can also be written as:

$$
a_{x} \equiv \frac{d v_{x}}{d t}=\frac{d}{d t}\left(\frac{d x}{d t}\right)=\frac{d^{2} x}{d t^{2}}
$$

(b)

103 Phys

Conceptual Question \#1

- Velocity and acceleration are both vectors (they have magnitude \& direction).
- Are the velocity and the acceleration always in the same direction?

READ EXAMPLES 2.4 \& 2.5 in the Textbook

Pervious Final question

A runner runs around a track consisting of two parallel lines 96 m long connected at the ends by two semicircles with a radius of 49 m . If he completes one lap in two minutes, then his average speed is:
A. $1.6 \mathrm{~m} / \mathrm{s}$
B. $4.2 \mathrm{~m} / \mathrm{s}$
C. $2.9 \mathrm{~m} / \mathrm{s}$
D. $0 \mathrm{~m} / \mathrm{s}$

