2.6 Free Fall

> Free fall is a motion under the influence of gravitational pull (gravity) only; Which direction is a freely falling object moving?
$>$ Gravitational acceleration is inversely proportional to the distance between the object and the center of the earth
$>$ The gravitational acceleration is $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$ on the surface of the earth, most of the time.
$>$ The direction of gravitational acceleration is ALWAYS toward the center of the earth, which we normally call (-y) ; where up and down direction are indicated as the variable " y "
$>$ Thus the correct denotation of gravitational acceleration on the surface of the earth is $\mathrm{g}=-9.80 \mathrm{~m} / \mathrm{s}^{2}$

○ Free falling Objects

In the absence of air resistance, all objects fall towards the earth with the same constant acceleration $\left(a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$, due to gravity
$\overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{g}} \quad$; free falling acceleration gravitational acceleration $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$

Free fall motions: Summary

$$
\begin{aligned}
& v=v_{o}-g t \\
& y-y_{o}=v_{o} t-\frac{1}{2} g t^{2} \\
& y-y_{o}=\frac{1}{2}\left(v+v_{o}\right) t \\
& v^{2}=v_{o}^{2}-2 g\left(y-y_{o}\right)
\end{aligned}
$$

$$
\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}
$$

A ball is thrown up from the top of a building 40 m high with initial velocity of $10.0 \mathrm{~m} / \mathrm{s}$, determine:
(a) The time at which the ball reaches its maximum height.
(b) The maximum height.
(c) The time at which the ball returns to the position from which it was thrown.
(d) The velocity of the ball at this instant.
(e) The time at which the ball reach the ground.
(f) The velocity of the ball when its reach the ground.
(g) If the ball thrown downward with the same velocity ($10 \mathrm{~m} / \mathrm{s}$), what the velocity of the ball when its reach the ground?

$4.9 t^{2}-10 t-40=0$

$\mathrm{t}=4.05 \mathrm{~s}$
(f) The velocity of the ball when its reach the ground.

$$
\begin{aligned}
v & =v_{o}-g t \\
& =+10-(9.8)(4.05)=-29.69 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Try using $v^{2}=v_{o}^{2}-2 g y$
(g) left for you to try.

A box falls from an elevator that is ascending with a velocity of $2 \mathrm{~m} / \mathrm{s}$. It strikes the ground in 3 sec .
(a) How long will it take the box to reach its maximum height?
(b) How far from the ground was the box when it fell off the elevator?
(c) What is the height of the elevator when the box is at its highest point?

When the box falls from the elevator, its initial velocity will be $v_{0}=2 \mathrm{~m} / \mathrm{s}$ and $a=-g$.
(a) At maximum height, the box velocity is $v=0$

$$
\begin{aligned}
& v=v_{0}-g t \\
& 0=v_{0}-g t \\
& \therefore t=v_{0} / g=0.204 \mathrm{~s}
\end{aligned}
$$

(b) $t=3 \mathrm{sec} ; v_{0}=2 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& y=v_{0} t-\frac{1}{2} g t^{2} \\
& \therefore y=(2)(3)-\frac{1}{2}(9.8)(3)^{2}=-38.1 \mathrm{~m}
\end{aligned}
$$

(c) The box will reach the maximum height in $\mathbf{t}=0.204 \mathrm{sec}$. During this time, the elevator will move up with constant velocity ($v=2 \mathrm{~m} / \mathrm{s}$) and acceleration $\mathrm{a}=0$.

$$
\begin{aligned}
& y=v_{0} t+\frac{1}{2} a t^{2} \\
& \therefore y=(2)(0.204)-0=0.408 m
\end{aligned}
$$

Therefore the height of the elevator, from the ground, when the box at its
highest point $=38.1+0.408=38.51 \mathrm{~m}$

عردتـه إلى اسفل بواسطةٌ شخص يقف	ققْف حجر إلى أعلى بسرعةٌ ابتدائيةٌ مقدارها 20 m/s ثُم مُسِك خلال على ارتفاع m 5 من نقطة القذف. (أ) احسب سرعة الحجر عند مَسكهـ. (ب) احسب الزمن الذي استغرقه الحجر في الهواء. (ج) احسب أقصي ارتفاع يصل إليه الحجر.
	(a) v^{2} $\begin{aligned} \mathrm{v}^{2} & =v_{0}^{2}-2 g y \\ \mathrm{v} & =\sqrt{v_{0}^{2}-2 g y}= \pm 17.4=-17.4 \mathrm{~m} / \mathrm{s} \end{aligned}$ (b) $\mathrm{v}=\mathrm{v}_{0}-g t \rightarrow \mathrm{t}=\frac{\mathrm{v}-\mathrm{v}_{0}}{-\mathrm{g}}=\frac{(-17.4)-(20)}{-9.8}=3.82 \mathrm{~s}$ (c) at max. height $v=0$ $\begin{aligned} & \mathrm{v}^{2}=v_{0}^{2}-2 g y \\ & \mathrm{y}=\frac{\mathrm{v}^{2}-v_{0}^{2}}{-2 \mathrm{~g}}=\frac{0-(20)^{2}}{-2(9.8)}=20.4 \mathrm{~m} \quad(\text { from ground }) \end{aligned}$
103 Phys	Dr. Abdallah M.Akeer 13

The pilot of a hovering helicopter drops a lead brick from a height of 1000 m . How long does it take to reach the ground and how fast is it moving when it gets there? (neglect air resistance)
14.3 s
$-140 \mathrm{~m} / \mathrm{s}$

A man ascending at $7 \mathrm{~m} / \mathrm{s}$ in a balloon 20 m above the ground accidentally drops a box. The velocity of the box just before touching the ground is:
(a) $14 \mathrm{~m} / \mathrm{s}$
(b) $18 \mathrm{~m} / \mathrm{s}$
(c) $21 \mathrm{~m} / \mathrm{s}$
(d) $58 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
v & =v_{o}^{2}-2 g y \\
& =(7)^{2}-2(9.8)(-20)=441 \\
v & =21 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

A ball is thrown vertically upward from the ground with a speed of $29.4 \mathrm{~m} / \mathrm{s}$. The time it takes the ball to arrive at a height of 19.6 m on its way back is:
(a) 5.235 s
(b) 1.345 s
(c) 0.652 s
(d) 0.052 s

READ EXAMPLES 2.9 \& $\underline{2.12}$ in the Textbook
To get A+ : Study and Solve Problems As MUCH As you CAN

UNIT 2
 SEGMENTE FREE FALL

