CHAPTER 9

LINEAR MOMENTUM , IMPULSE AND COLLISIONS

9.1 Linear Momentum

The principle of energy conservation can be used to solve problems that are harder to solve just using Newton's laws. It is used to describe motion of an object or a system of objects.

A new concept of linear momentum can also be used to solve physical problems, especially the problems involving collisions of objects.

Linear momentum of an object whose mass is m and is moving at a velocity of v is defined as

$$
\vec{p}=m \vec{v}
$$

Consider two particles interact with each other
By Newton's 3rd law:
$\overrightarrow{\mathbf{F}}_{21}=-\overrightarrow{\mathbf{F}}_{12}$
$\overrightarrow{\mathbf{F}}_{21}+\overrightarrow{\mathbf{F}}_{12}=\mathbf{0}$
$\boldsymbol{m}_{1} \vec{a}_{1}+\boldsymbol{m}_{2} \vec{a}_{2}=\mathbf{0}$
$m_{1} \frac{d \vec{v}_{1}}{d t}+\boldsymbol{m}_{2} \frac{d \vec{v}_{2}}{d t}=\mathbf{0}$
$\frac{d\left(m_{v_{1}}\right)}{d t}+\frac{d\left(m_{2} \vec{v}_{2}\right)}{d t}=0$
$\frac{d\left(m_{1} \vec{v}_{1}+m_{2} \vec{v}_{2}\right)}{d t}=0$
Linear momentum $\vec{p} \equiv m \vec{v}$
$\frac{d\left(p_{1}+p_{2}\right)}{d t}=0$
i.e., Total momentum $\vec{p}_{t o t}=\sum \overrightarrow{\boldsymbol{p}}=\vec{p}_{1}+\overrightarrow{\boldsymbol{p}}_{2}$ remains constant

What can you tell from this definition about momentum?
\Rightarrow Momentum is a vector quantity.
\Rightarrow The heavier the object the higher the momentum
\Rightarrow The higher the velocity the higher the momentum
\Rightarrow Its unit is $\mathrm{kg} . \mathrm{m} / \mathrm{s}$
What else can use see from the definition? Do you see force?

$$
\vec{p}=m \vec{v} \quad(\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{sec} .)
$$

VECTOR

$$
\boldsymbol{p}_{x}=\boldsymbol{m} v_{x}, p_{y}=\boldsymbol{m} v_{y}, p_{z}=m v_{z}
$$

Relationship to force:

$$
\begin{aligned}
\frac{d \mathrm{p}}{d \boldsymbol{t}}=\frac{d(m \mathrm{v})}{d \boldsymbol{t}} & =\boldsymbol{m} \frac{d \mathbf{v}}{d \boldsymbol{t}}+\mathrm{v} / \boldsymbol{d t} \\
& =\boldsymbol{m} \mathbf{a} \\
& =\sum \mathbf{F} \quad \begin{array}{c}
\text { Mass usually doesn't } \\
\text { change with time }
\end{array}
\end{aligned}
$$

$$
\text { Improved form of } 2^{\text {nd }} \text { Law: } \quad \sum \overrightarrow{\mathrm{F}}=\frac{d \overrightarrow{\mathbf{p}}}{d t}
$$

Probably was Newton's original form of $\mathbf{2}^{\text {nd }}$ Law.
Works even when mass does change, e.g., rockets.

Momentum is conserved in the absence of a net external force.

$$
\begin{aligned}
& \vec{p}_{\text {tot }}=\vec{p}_{1}+\vec{p}_{2}: \text { Constant } \Rightarrow \text { Conservation of Total Momentum } \\
& \therefore \vec{p}_{1 i}+\vec{p}_{2 i}=\vec{p}_{1 f}+\vec{p}_{2 f}
\end{aligned}
$$

Momentum Conservation

$>$ The concept of momentum conservation is one of the most fundamental principles in physics.
$>$ This is a component (vector) equation.

- We can apply it to any direction in which there is no external force applied.
\Rightarrow You will see that we often have momentum conservation even when energy is not conserved.

Example 9.1

An archer standing at rest on frictionless ice. He fires an arrow horizontally.
$m_{1}=60 \mathrm{~kg}, m_{2}=0.5 \mathrm{~kg}, v_{2}=50 \mathrm{~m} / \mathrm{s}$
What is the velocity of the archer after firing the arrow?

$$
\begin{aligned}
& m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f}=0 \\
& \vec{v}_{1 f}=-\frac{m_{2}}{m_{1}} \vec{v}_{2 f}=-0.42 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

If the arrow were shot at an angle θ with theh horizontal, what is the recoil velocity

$$
\begin{aligned}
& m_{1} v_{1 f}+m_{2} v_{2 f} \cos \theta=0 \\
& v_{1 f}=-\frac{m_{2}}{m_{1}} v_{2 f} \cos \theta
\end{aligned}
$$

READ Examples 9.2

Example:

Figure below shows a 2.0 kg toy race car before and after taking a turn on a track. Its speed is $0.50 \mathrm{~m} / \mathrm{s}$ before the turn and $0.40 \mathrm{~m} / \mathrm{s}$ after the turn. What is the change $\Delta \overrightarrow{\mathrm{P}}$ in the linear momentum of the car due to the turn?
$\vec{v}_{i}=-(0.50 \mathrm{~m} / \mathrm{s}) \hat{j}$ and $\vec{v}_{f}=(0.40 \mathrm{~m} / \mathrm{s}) \hat{i}$
$\vec{P}_{i}=M \vec{v}_{i}=(2.0 \mathrm{~kg})(-0.50 \mathrm{~m} / \mathrm{s}) \hat{j}=(-1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \hat{j}$
$\vec{P}_{f}=M \vec{v}_{f}=(2.0 \mathrm{~kg})(0.40 \mathrm{~m} / \mathrm{s}) \hat{i}=(0.80 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \hat{i}$

(a)

$$
\Delta \overrightarrow{\boldsymbol{P}}=\overrightarrow{\boldsymbol{P}}_{f}-\overrightarrow{\boldsymbol{P}}_{i}
$$

$$
\Delta \vec{P}=(0.80 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \hat{i}-(-1.0 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) \hat{j}
$$

$$
=(0.8 \hat{i}+1.0 \hat{j}) \mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}
$$

9.2 Impulse and Momentum

The change of momentum in a given time interval

$$
\begin{aligned}
& \bar{a}=\frac{v_{f}-v_{i}}{\Delta t}, \quad \because \bar{F}=m \bar{a}=m\left(\frac{v_{f}-v_{i}}{\Delta t}\right) \\
& \therefore \quad \bar{F} \Delta t=m v_{f}-m v_{i}=p_{f}-p_{i}=\Delta p
\end{aligned}
$$

Impulse $=$ force times time=change in momentum $\vec{I}=\vec{F} \Delta t=\Delta \vec{p}$

$$
\frac{\Delta \vec{p}}{\Delta t}=\frac{m \vec{v}-m \vec{v}_{0}}{\Delta t}=\frac{m\left(\vec{v}-\vec{v}_{0}\right)}{\Delta t}=m \frac{\Delta \vec{v}}{\Delta t}=m \vec{a}=\sum \vec{F}
$$

Impulse and Momentum

$$
\vec{I}=\int_{t_{i}}^{t_{f}} \vec{F} d t
$$

In general, $\vec{F}=\vec{F}(t)$
\rightarrow Impulse $=$ area under \vec{F}, t curve

$$
\begin{gather*}
\overrightarrow{\bar{F}}=\frac{1}{\Delta t} \int_{t_{i}}^{t_{f}} \vec{F} d t \\
\vec{I}=\overrightarrow{\bar{F}} \Delta t \tag{exconncmentacosost}
\end{gather*}
$$

(a)

(b)

Simple case: constant Force

$$
\vec{I}=\vec{F} \Delta t
$$

Example;

(a) Calculate the impulse experienced when a 70 kg person lands on firm ground after jumping from a height of 3.0 m . Then estimate the average force exerted on the person's feet by the ground, if the landing is (b) stiff-legged and (c) with bent legs. In the former case, assume the body moves 1.0 cm during the impact, and in the second case, when the legs are bent, about 50 cm .

We don't know the force. How do we do this?

Obtain velocity of the person before striking the ground.
$K E=-\triangle P E \quad \frac{1}{2} m v^{2}=-m g\left(y-y_{i}\right)=m g y_{i}$
Solving the above for velocity v , we obtain
$v=\sqrt{2 g y_{i}}=\sqrt{2 \cdot 9.8 \cdot 3}=7.7 \mathrm{~m} / \mathrm{s}$
Then as the person strikes the ground, the
momentum becomes 0 quickly giving the impulse

$$
\begin{aligned}
I=\bar{F} \Delta t=\Delta p & =p_{f}-p_{i}=0-m v= \\
& =-70 \mathrm{~kg} \cdot 7.7 \mathrm{~m} / \mathrm{s}=-540 \mathrm{~N} \cdot \mathrm{~s}
\end{aligned}
$$

Example; cont'd

In coming to rest, the body decelerates from $7.7 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ in a distance $\mathrm{d}=1.0 \mathrm{~cm}=0.01 \mathrm{~m}$.
The average speed during this period is $\quad \bar{v}=\frac{0+v_{i}}{2}=\frac{7.7}{2}=3.8 \mathrm{~m} / \mathrm{s}$
The time period the collision lasts is

$$
\Delta t=\frac{d}{\bar{v}}=\frac{0.01 \mathrm{~m}}{3.8 \mathrm{~m} / \mathrm{s}}=2.6 \times 10^{-3} \mathrm{~s}
$$

Since the magnitude of impulse is

$$
I=\bar{F} \Delta t=540 \mathrm{~N} \cdot \mathrm{~s}
$$

The average force on the feet during $\bar{F}=\frac{I}{\Delta t}=\frac{540}{2.6 \times 10^{-3}}=2.1 \times 10^{5} \mathrm{~N}$
this landing is
How large is this average force? Weight $=70 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=6.9 \times 10^{2} \mathrm{~N}$

$$
\bar{F}=2.1 \times 10^{5} N=304 \times 6.9 \times 10^{2} N=304 \times \text { Weight }
$$

If landed in stiff legged, the feet must sustain 300 times the body weight. The person will likely break his leg.

Example; cont'd

What if the knees are bent in coming to rest? The body decelerates from $7.7 \mathrm{~m} / \mathrm{s}$ to 0 m / s in a distance $\mathrm{d}=50 \mathrm{~cm}=0.5 \mathrm{~m}$.
The average speed during this period is still the same $\bar{v}=\frac{0+v_{i}}{2}=\frac{7.7}{2}=3.8 \mathrm{~m} / \mathrm{s}$
The time period the collision lasts changes to

Since the magnitude of impulse is

$$
\begin{aligned}
& \Delta t=\frac{d}{\bar{v}}=\frac{0.5 \mathrm{~m}}{3.8 \mathrm{~m} / \mathrm{s}}=1.3 \times 10^{-1} \mathrm{~s} \\
& I=\bar{F} \Delta t=540 \mathrm{~N} \cdot \mathrm{~s}
\end{aligned}
$$

The average force on the feet during $\bar{F}=\frac{I}{\Delta t}=\frac{540}{1.3 \times 10^{-1}}=4.1 \times 10^{3} \mathrm{~N}$
this landing is
How large is this average force? Weight $=70 \mathrm{~kg} \cdot 9.8 \mathrm{~m} / \mathrm{s}^{2}=6.9 \times 10^{2} \mathrm{~N}$

$$
\bar{F}=4.1 \times 10^{3} N=5.9 \times 6.9 \times 10^{2} N=5.9 \times \text { Weight }
$$

It's only 6 times the weight that the feet have to sustain! So by bending the knee you increase the time of collision, reducing the average force exerted on the knee, and will avoid injury!

A 3.00-kg steel ball strikes a wall with a speed of $10.0 \mathrm{~m} / \mathrm{s}$ at an angle of 60.0° with the surface. It bounces off with the same speed and angle as in Figure. If the ball is in contact with the wall for 0.200 s , what is the average force exerted by the wall on the ball?

Example 9.3

A golf ball of mass 50 g is struck by a club. The force exerted on the ball by the club varies from 0 , at the instant before contact, up to some maximum value at which the ball is deformed and then back to 0 when the ball leaves the club. Assuming the ball travels 200 m , estimate the magnitude of the impulse caused by the collision.

The range R of a projectile is

$$
R=\frac{v_{B}^{2} \sin 2 \theta_{B}}{g}=200 m
$$

Let's assume that launch angle $\theta_{i}=45^{\circ}$.

Note the deformation of the ball due to the large force from the club

Then the speed becomes:

$$
v_{B}=\sqrt{200 \times g}=\sqrt{1960}=44 \mathrm{~m} / \mathrm{s}
$$

Considering the time interval for the collision, t_{i} and t_{f}, initial speed and the final speed are
$v_{i}=0$ (immediately before the collision)
$v_{f}=44 \mathrm{~m} / \mathrm{s}$ (immediately after the collision)

Therefore the magnitude of the impulse on the ball due to the force of the club is $|\vec{I}|=|\Delta \bar{p}|=m v_{B f}-m v_{B i}=0+0.05 \times 44=2.2 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$

What is the average force on the ball during the collision with the club?
If we assume that the time interval is 0.01 s
$\bar{F}=\frac{I}{\Delta t}=200 \mathrm{~N}$

