		Multiple choice	questions		
1	If the velocity v is related to acceleration a and distance x by the following expression: $v^2 = 2ax^p$. The power p that makes this equation dimensionally consistent is:				
	A) 0	B) 1	C) -1	D) 2	
2	In one-dimensional mot original place, its average A) is positive.	ion, if an object moves from e speed: B) is negative.	m one place to another C) is Zero	D) depends on the direction	
3	A car is traveling at a constant speed of 20 m/s . The driver of the car had to accelerate his speed by 3 m/s² once he passed a hidden police trap (نقطة رصد للسرعات المخالفة). A police car starts from rest just as the speeder car passes it. What would be the acceleration of the police car to catch this speeder car in one minute?				
4	A) 4.4 m/s² B) 2.5 m/s² C) 5.2 m/s² D) 3.7 m/s² A man wants to measure the depth of a well (عمق بئر) by using a small stone and a stopwatch, so he dropped the stone inside the well. His stopwatch measured 2.8 seconds when the stone clashed with the water surface. What is the depth of this well? A) 47.3 m B) 32.2 m C) 38.4 m D) 55 m				
5	\vec{A} and \vec{B} are oriented:	their magnitudes are given to B) parallel to each other (in the same direction)	en by A + B = C, C) antiparallel to each other (in opposite directions)	D) It is impossible to know from the given information	
	If $\mathbf{A} = 3 \mathbf{i} - 2 \mathbf{j}$ and $\mathbf{B} = 2$	$\mathbf{i} - \mathbf{j}$. The magnitude of the	vector $\mathbf{C} = 2 \mathbf{A} - \mathbf{B}$ is:	momuton	
6	A) 3.0	B) 7.4	C) 5.0	D) 6.1	
7	A vector \overrightarrow{A} has component $+x$ -axis is: A) 22.6°	ents $A_x = 12$ m and $A_y = 3$ B) 12.6°	5 m. The angle that vector C) 32.6°	or \vec{A} makes with the D) 2.6°	
8	in the xy plane with a con	is the origin with a velocity of the velocity of the particle in the velocity of the particle	$i-4j$) m/s^2 . At the instant		

_						
	As a projectile thrown upward moves in its parabolic path, its horizontal velocity component:					
9	A) increase	B) decrease	C) increase and the decrease	nen D) remain constant		
10	(building A in the F to run and jump hori B). The safe buildin 3 m lower. The min man to survive and it	on the top of a burning beingure). To avoid death, he azontally to a safe building (but g was 6.5 m horizontally avoid and in the control of the control o	decided building way and lows the ely is:	50 m		
	A) 4.9 m/s	B) 7.1 m/s	C) 8.3 m/s	D) 9.2 m/s		
11	A car moves with a constant acceleration of 0.4 m/s ² parallel to the roadway. The car passes over a rise in the roadway such that the top of the rise is shaped like a circle of radius 500 m. At the moment the car is at the top of the rise, its velocity vector is horizontal and has a magnitude of 6 m/s. The magnitude of the total acceleration for the car at this instant is:					
	A) 0.31 m/s ²	B) 0.41 m/s ²	C) 0.51 m/s^2	D) 0.22 m/s ²		
12	The figure represents the total acceleration of a particle moving clockwise in a circle of radius 2.5 m at a certain instant of time. At this instant, the speed of the particle is: $a = 15.0 \text{ m}$ 30.0°					
	A) 2.1 m/s	B) 7.4 m/s	C) 4.3 m/s	D) 5.7 m/s		
13	If the tension, T , is a what is the mass, m , the pulley are friction	·				
	A) 1.3 kg	B) 1.8 kg	C) 2.2 kg	D) 3.4 kg		

Name: _{**}	ID:

14	At an instant when a 4 kg object has an acceleration equal to $(5\mathbf{i} + 3\mathbf{j}) \text{ m/s}^2$, one of the two forces acting on the object is known to be $(12\mathbf{i} + 22\mathbf{j}) \text{ N}$. The magnitude of the other force acting on the object is:				
	A) (10 i -8 j) N	B) (8 i -12 j) N	C) (6 i +9 j) N	D) (8 i -10 j) N	
15	A) accelerates upward	B) moves upward at constant velocity	C) moves downward at constant velocity	D) accelerates downward	
16	A 5 kg box is pulled by F=14 N with angle 35° on a rough horizontal surface with constant speed as shown in the Figure. The coefficient of kinetic friction between the box and the surface is:				
	A) 0.44	B) 0.33	C) 0.38 D)	0.28	
	A 4 kg block slides down	ation $\frac{g}{2}$. What is the kinet	tic friction force on		
17					
	A) 4 N	B) 43.2 N	C) 11.7 N	D) 50.9 N	
18	On a frictionless banked or maximum possible speed		= =		
	A) 58.5 m/s	B) 17.3 m/s	C) 16.9 m/s	D) 30.6 m/s	
	Consider the conical pendo	-	-	/ ₀ ;	
	of the circular motion of the mass m is 0.5 m/s and $\theta = 25^{\circ}$, the radius r is:				
19			m r		
	A) 0.055 m	B) 0.028 m	C) 0.08 m	D) 0.11 m	
20	An object moves around a circle. If the radius is doubled keeping the speed the same, then the magnitude of the centripetal force must be:				
	A) twice as great	B) half as great	C) four times as great	D) one-fourth as great	

The End