| | | Multiple choice | questions | | | |---|--|---|--|--|--| | 1 | If the velocity v is related to acceleration a and distance x by the following expression: $v^2 = 2ax^p$. The power p that makes this equation dimensionally consistent is: | | | | | | | A) 0 | B) 1 | C) -1 | D) 2 | | | 2 | In one-dimensional mot original place, its average A) is positive. | ion, if an object moves from e speed: B) is negative. | m one place to another C) is Zero | D) depends on the direction | | | 3 | A car is traveling at a constant speed of 20 m/s . The driver of the car had to accelerate his speed by 3 m/s² once he passed a hidden police trap (نقطة رصد للسرعات المخالفة). A police car starts from rest just as the speeder car passes it. What would be the acceleration of the police car to catch this speeder car in one minute? | | | | | | 4 | A) 4.4 m/s² B) 2.5 m/s² C) 5.2 m/s² D) 3.7 m/s² A man wants to measure the depth of a well (عمق بئر) by using a small stone and a stopwatch, so he dropped the stone inside the well. His stopwatch measured 2.8 seconds when the stone clashed with the water surface. What is the depth of this well? A) 47.3 m B) 32.2 m C) 38.4 m D) 55 m | | | | | | 5 | \vec{A} and \vec{B} are oriented: | their magnitudes are given to B) parallel to each other (in the same direction) | en by A + B = C, C) antiparallel to each other (in opposite directions) | D) It is impossible to know from the given information | | | | If $\mathbf{A} = 3 \mathbf{i} - 2 \mathbf{j}$ and $\mathbf{B} = 2$ | $\mathbf{i} - \mathbf{j}$. The magnitude of the | vector $\mathbf{C} = 2 \mathbf{A} - \mathbf{B}$ is: | momuton | | | 6 | A) 3.0 | B) 7.4 | C) 5.0 | D) 6.1 | | | 7 | A vector \overrightarrow{A} has component $+x$ -axis is: A) 22.6° | ents $A_x = 12$ m and $A_y = 3$
B) 12.6° | 5 m. The angle that vector C) 32.6° | or \vec{A} makes with the D) 2.6° | | | 8 | in the xy plane with a con | is the origin with a velocity of the velocity of the particle in | $i-4j$) m/s^2 . At the instant | | | | _ | | | | | | | |----|--|---|---|--------------------------|--|--| | | As a projectile thrown upward moves in its parabolic path, its horizontal velocity component: | | | | | | | 9 | A) increase | B) decrease | C) increase and the decrease | nen D) remain constant | | | | 10 | (building A in the F to run and jump hori B). The safe buildin 3 m lower. The min man to survive and it | on the top of a burning beingure). To avoid death, he azontally to a safe building (but g was 6.5 m horizontally avoid and in the control of o | decided building way and lows the ely is: | 50 m | | | | | A) 4.9 m/s | B) 7.1 m/s | C) 8.3 m/s | D) 9.2 m/s | | | | 11 | A car moves with a constant acceleration of 0.4 m/s ² parallel to the roadway. The car passes over a rise in the roadway such that the top of the rise is shaped like a circle of radius 500 m. At the moment the car is at the top of the rise, its velocity vector is horizontal and has a magnitude of 6 m/s. The magnitude of the total acceleration for the car at this instant is: | | | | | | | | A) 0.31 m/s ² | B) 0.41 m/s ² | C) 0.51 m/s^2 | D) 0.22 m/s ² | | | | 12 | The figure represents the total acceleration of a particle moving clockwise in a circle of radius 2.5 m at a certain instant of time. At this instant, the speed of the particle is: $a = 15.0 \text{ m}$ 30.0° | | | | | | | | A) 2.1 m/s | B) 7.4 m/s | C) 4.3 m/s | D) 5.7 m/s | | | | 13 | If the tension, T , is a what is the mass, m , the pulley are friction | · | | | | | | | A) 1.3 kg | B) 1.8 kg | C) 2.2 kg | D) 3.4 kg | | | | Name: _{**} | ID: | |---------------------|-----| | | | | 14 | At an instant when a 4 kg object has an acceleration equal to $(5\mathbf{i} + 3\mathbf{j}) \text{ m/s}^2$, one of the two forces acting on the object is known to be $(12\mathbf{i} + 22\mathbf{j}) \text{ N}$. The magnitude of the other force acting on the object is: | | | | | |----|---|---|--|---------------------------------|--| | | A) (10 i -8 j) N | B) (8 i -12 j) N | C) (6 i +9 j) N | D) (8 i -10 j) N | | | | | | | | | | 15 | A) accelerates upward | B) moves upward at constant velocity | C) moves downward at constant velocity | D) accelerates downward | | | 16 | A 5 kg box is pulled by F=14 N with angle 35° on a rough horizontal surface with constant speed as shown in the Figure. The coefficient of kinetic friction between the box and the surface is: | | | | | | | A) 0.44 | B) 0.33 | C) 0.38 D) | 0.28 | | | | A 4 kg block slides down | ation $\frac{g}{2}$. What is the kinet | tic friction force on | | | | 17 | | | | | | | | A) 4 N | B) 43.2 N | C) 11.7 N | D) 50.9 N | | | 18 | On a frictionless banked or maximum possible speed | | = = | | | | | A) 58.5 m/s | B) 17.3 m/s | C) 16.9 m/s | D) 30.6 m/s | | | | Consider the conical pendo | - | - | / ₀ ; | | | | of the circular motion of the mass m is 0.5 m/s and $\theta = 25^{\circ}$, the radius r is: | | | | | | 19 | | | m r | | | | | A) 0.055 m | B) 0.028 m | C) 0.08 m | D) 0.11 m | | | 20 | An object moves around a circle. If the radius is doubled keeping the speed the same, then the magnitude of the centripetal force must be: | | | | | | | A) twice as great | B) half as great | C) four times as great | D) one-fourth as great | | The End