Take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$ wherever needed

Q	Multiple choice questions			
$\mathbf{1}$	Which of the following quantities contains all three basic dimensions of mechanics?			
	A) displacement	B) velocity	C) acceleration	D) force

Considering the motion of a particle, which of the following quantities have always the same direction?

2
A) displacement and
B) velocity and
C) acceleration and
D) all of the velocity acceleration displacement previous

An object moves along the x -axis according to the expression $\boldsymbol{x}=\mathbf{5 + 9} \boldsymbol{t} \boldsymbol{7} \boldsymbol{t}^{\mathbf{2}}$, where \boldsymbol{x} is in meters and \boldsymbol{t} is in seconds. At $\boldsymbol{t}=4.0 \mathrm{sec}$, the acceleration of the object will be:
3
A) $2 \mathrm{~ms}^{-2}$
B) $-5 \mathrm{~ms}^{-2}$
C) $7 \mathrm{~ms}^{-2}$
D) $-14 \mathrm{~ms}^{-2}$

A stone is thrown straight downward with an initial speed of $9.0 \mathrm{~m} / \mathrm{s}$ from the roof of a $\mathbf{4 5 . 0} \mathrm{m}$ tall building. The time taken by the stone to touch the ground is:
4
A) 1.8 s
B) 2.25 s
C) 3.32 s
D) 4.9 s

If $\overrightarrow{\mid A}|=\mathbf{2 0 . 0} \mathbf{m},|\vec{B}|=\mathbf{4 0 . 0} \mathbf{~ m}$, and, $\overrightarrow{|C|}=\mathbf{3 0 . 0} \mathbf{~ m}$, then what is the magnitude of the sum of these three vectors?
A) 56.4 m
B) 25.7 m
C) 192.8 m
D) 72.6 m

If $\overrightarrow{\boldsymbol{A}}=\mathbf{2} \hat{\boldsymbol{i}}+\mathbf{2} \hat{\mathbf{j}}$, and $\overrightarrow{\boldsymbol{B}}=\mathbf{2} \hat{\boldsymbol{i}}-\mathbf{4} \hat{\mathbf{j}}$, then what is the angle that the sum vector $(\overrightarrow{\boldsymbol{A}}+\overrightarrow{\boldsymbol{B}})$ makes with the positive x -axis?
A) 90°
B) -19°
C) -27°
D) 42°

If the component of vector $\overrightarrow{\boldsymbol{A}}$ along the direction of vector $\overrightarrow{\boldsymbol{B}}$ is zero, what can you conclude about the two vectors?
8
A) The two vectors are parallel to each other
B) The two vector makes 45° with each other
C) The two vectors are perpendicular to the x-axis
D) The two vectors are perpendicular to each other

At $\boldsymbol{t}=\boldsymbol{0}$, a particle leaves the origin with a velocity of $\mathbf{9 . 0} \mathbf{m} / \boldsymbol{s}$ in the positive y direction and moves in the $\boldsymbol{x y}$ plane with a constant acceleration of $(\mathbf{2} \hat{\boldsymbol{\imath}}-\mathbf{4} \hat{\boldsymbol{\jmath}}) \boldsymbol{m} / \mathbf{s}^{2}$. At the instant the \boldsymbol{x} coordinate of the particle is 15.0 m , the speed of the particle is:
A) $10 \mathrm{~m} / \mathrm{s}$
B) $12 \mathrm{~m} / \mathrm{s}$
C) $14 \mathrm{~m} / \mathrm{s}$
D) $16 \mathrm{~m} / \mathrm{s}$

Two projectiles are launched at $\mathbf{1 0 0} \mathbf{~ m} / \mathbf{s}$, the angle of elevation for the first being $\mathbf{3 0}{ }^{\boldsymbol{o}}$ and for the second $\mathbf{6 0} \boldsymbol{0}^{\circ}$. Which of the following statements is correct?
A) The projectiles do not
B) Both projectiles have
C) The first projectile have the same acceleration the same range. while in flight. has the lower speed at maximum altitude.
D) The second projectile has the lower range.

A ball is launched from ground level at $18.0 \mathrm{~m} / \mathrm{s}$ at an angle of 36° above the horizontal. How far does it go before it is at ground level again?
A) 14 m
B) 31 m
C) 22 m
D) 86 m

An object moving at a constant speed requires 6.0 sec to go once around a circle with a diameter of 4.0 m . What is the magnitude of the centripetal acceleration of the particle during this time?
A) $2.2 \mathrm{~m} / \mathrm{s}^{2}$
B) $3.3 \mathrm{~m} / \mathrm{s}^{2}$
C) $3.9 \mathrm{~m} / \mathrm{s}^{2}$
D) $4.4 \mathrm{~m} / \mathrm{s}^{2}$

