Take g = 9.8 ms⁻² wherever needed

Q		Multiple ch	noice questions			
1	Which of the following quantities contains all three basic dimensions of mechanics?					
1	A) displacement	B) velocity	C) acceleration	D) force		
	Considering the motion of a particle, which of the following quantities have <u>always</u> the same direction?					
2	A) displacement and velocity	B) velocity and acceleration	C) acceleration and displacement	D) all of the previous		
3	_	ct moves along the x-axis according to the expression $x = 5+9t-7t^2$, where x is in meters and econds. At $t=4.0$ sec, the acceleration of the object will be:				
	A) 2 ms ⁻²	B) -5 ms ⁻²	C) 7 ms ⁻²	D) -14 ms ⁻²		
4	building. The time taken	by the stone to touch t				
	A) 1.8 s	B) 2.25 s	C) 3.32 s	D) 4.9 s		
5	If $ \overrightarrow{A} = 20.0 \text{ m}$, $ \overrightarrow{B} $ what is the magnitude of			45 B B C C C C C C C C C C C C C C C C C		
	A) 56.4 m	B) 25.7 m	C) 192.8 m	D) 72.6 m		
6	If $\vec{A} = 2\hat{i} + 2\hat{j}$, and $\vec{B} =$ the positive x-axis?	$2\hat{i} - 4\hat{j}$, then what is t	he angle that the sum vector ($(\vec{A} + \vec{B})$ makes with		
	A) 90 °	B) -19 °	C) -27 °	D) 42 °		

17			30° F	f F	
	A) 5.3 m/s ²	B) 6.0 m/s ²	C) 7.5 m/s ²	D) 3.2 m/s ²	
18	A 25.0 kg block is initially at rest on a horizontal surface. A horizontal force of 75.0 N is required to set the block in motion. After it is in motion, a horizontal force of 60.0 N is required to keep block moving with constant speed. The coefficients of static and kinetic friction are respective.				
	A) 0.306 and 0.245	B) 0.35 and 0.20	C) 0.100 and 0.252	D) 0.30 and 0.4	
10	A car is travelling at 90 km/h on a horizontal highway on a rainy day corresponding to a coefficient of static friction close to 0.1 between the road and the tires. After breaking, it will need a certain distance d to come to a stop. What is true?				
19	of static friction close to	0.1 between the road and		-	
19	of static friction close to	0.1 between the road and		it will need a certai D) On a sunny	
19	of static friction close to distance <i>d</i> to come to a static A) On a sunny day the coefficient of static friction will be smaller than 0.1 A 20.0 kg box is pulled a	0.1 between the road and top. What is true?B) On a sunny day, the stopping distance will	the tires. After breaking, C) None of those that makes an angle θ with	D) On a sunny day, the stopping distance will be smaller than d	