

Work \& Energy

So far: Motion analysis with forces.
NOW: An alternative analysis using the concepts of Work \& Energy.
Easier? My opinion is yes!

Conservation of Energy:

NOT a new law! Just Newton's Laws in a different language.

- One of the most important concepts in physics
> Alternative approach to mechanics
- Many applications beyond mechanics
$>$ Thermodynamics (movement of heat)
> Quantum mechanics...
- Very useful tools
$>$ You will learn new (sometimes much easier) ways to solve problems

Definition of Work:

Work, W, is energy transferred to or from an object by means of a force acting on the object.

The transfer is not a flow as in a liquid.

Consider it more like an electronic transfer between two bank accounts. The Riyals amount in one account increases while the Riyals amount in the second account decreases, but nothing material has actually passed between the two accounts.

We can find an expression for work by considering an object that moves due to a force applied to it....

7.2 Work Done by Constant Force

$>$ Work in physics is done only when a sum of forces exerted on an object made a motion to the object.
$>$ For an object moving under a Constant Force, Work done $(W)=$ product of magnitude of displacement $(\mathrm{d}) \times$ component of force parallel to displacement $\left(F_{\|}\right)$:

Which force did the work? Force \vec{F}

How much work did it do? $W=\left(\sum \vec{F}\right) \cdot \overrightarrow{\boldsymbol{d}}$
$\boldsymbol{W}=\boldsymbol{F}_{/} \boldsymbol{d}=\boldsymbol{F} \boldsymbol{d} \cos \theta$
What does this mean?
Physical work is done only by the component of of Scalar Quantity the force along the movement of the object.

Work is energy transfer!!

Work can be positive or negative

- Man does positive work lifting box
- Man does negative work lowering box
- Gravity does positive work when box lowers
- Gravity does negative work when box is raised

$$
W=F_{11} d=F d \cos \theta
$$

- Can exert a force \& do no work!

$$
\begin{aligned}
& \text { Could have } d=0 \Rightarrow W=0 \\
& \text { Could have } F \perp d \\
& \Rightarrow \theta=90^{\circ}, \cos \theta=0 \\
& \quad \Rightarrow W=0 \\
& \text { Example, walking at constant } v \text { with grocery } \\
& \text { bag: }
\end{aligned}
$$

L:\103 Phys LECTURES SLIDES 1 103Phys_Slides_T1Y3839\CH7Flash

What is the work done by

- the gravitational force $=0$
- the normal force $=0$
- the force $\mathrm{F}=\mathbf{F} \cos \theta$
when the block is displaced along the horizontal.

Example 7.1

A man cleaning a floor pulls a vacuum cleaner with a force of magnitude $F=50.0 \mathrm{~N}$ at an angle of 30° with the horizontal.

Calculate the work done by the force on the vacuum cleaner as its displaced 3.00 m to the right .

(b)

Example: On a frictionless plane, the block is subject to three forces: gravity, the normal force and tension \mathbf{T}. If it moves up the incline through displacement d:

Work done by $\mathbf{T}: W_{\mathbf{T}}=T \cdot d$ "effective"
Work done by $\mathbf{n}: W_{\mathbf{n}}=0 \cdot d=0$ "ineffective"
Work done by $m \mathrm{~g}: W_{m \mathrm{~g}}=(-m g \sin \phi) \cdot d=-m g d \sin \phi$
Net work $\sum W=W_{\mathbf{T}}+W_{\mathbf{n}}+W_{m \mathrm{~g}}=T d-$ "effective", $m g d x i n$

DEFINITION OF SCALAR(DOT) PRODUCT AND WORK

Work is the scalar product (or dot product) of the force \mathbf{F} and the displacement \mathbf{d}.

$$
W=\vec{F} \bullet \vec{d}=|F||d| \cos \theta
$$

\mathbf{F} and \mathbf{d} are vectors W is a scalar quantity

Definition:

Scalar product between vector \mathbf{A} and \mathbf{B}

$$
\vec{A} \bullet \vec{B} \equiv A B \cdot \cos \theta
$$

Scalar product is commutative:

$$
\vec{A} \bullet \vec{B}=\vec{B} \bullet \vec{A}
$$

Distributive law of multiplication:

$$
\vec{A} \bullet(\vec{B}+\vec{C})=\overrightarrow{\boldsymbol{A}} \bullet \vec{B}+\vec{A} \bullet \vec{C}
$$

Scalar Product using unit vectors:

The dot product $\mathbf{A} \cdot \mathbf{B}$ equals the magnitude of A multiplied by $B \cos \theta$, which is the projection of \mathbf{B} onto \mathbf{A}. Or vice versa.

In terms of vector components: $\mathrm{A}(\mathrm{B} \cos \theta)=\mathrm{B}(\mathrm{A} \cos \theta)$

$$
\begin{aligned}
& \mathbf{A} \cdot \mathbf{B}=\left(A_{x} \mathbf{i}+A_{y} \mathbf{j}+A_{z} \mathbf{k}\right) \cdot\left(B_{x} \mathbf{i}+B_{y} \mathbf{j}+B_{Z} \mathbf{k}\right) \\
& =A_{x} B_{x} \mathbf{i} \cdot \mathbf{i}+A_{X} \mathbf{i} \cdot \mathbf{j}+B_{z} \mathbf{i} \cdot \mathbf{k} \quad \mathbf{i} \cdot \mathbf{i}=\mathbf{j} \cdot \mathbf{j}=\mathbf{k} \cdot \mathbf{k}=1 \\
& +A_{1} \mathcal{N} \cdot \mathbf{i}+A_{y} B_{y} \mathbf{j} \cdot \mathbf{j}+A B \mathbf{j} \cdot \mathbf{k} \quad \mathbf{i} \cdot \mathbf{j}=\mathbf{i} \cdot \mathbf{k}=\mathbf{j} \cdot \mathbf{k}=0 \\
& +A B \mathbf{k} \cdot \mathbf{i}+A_{2} B_{k} \mathbf{k} \cdot \mathbf{j}+A_{z} B_{z} \mathbf{k} \cdot \mathbf{k} \\
& =A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
\end{aligned}
$$

Scalar Product using unit vectors:

We have the vectors \mathbf{A} and \mathbf{B} :

$$
\vec{A}=A_{x} \vec{i}+A_{y} \vec{j}+A_{z} \vec{k} \quad \vec{B}=B_{x} \vec{i}+B_{y} \vec{j}+B_{z} \vec{k}
$$

Then: $\vec{A} \bullet \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$

$$
\vec{A} \bullet \vec{A}=A_{x} A_{x}+A_{y} A_{y}+A_{z} A_{z}=A^{2}
$$

READ EXAMPLES 7.2 and 7.3 in your textbook

| Example of Work by Scalar Product |
| :--- | :--- |
| A particle moving in the xy plane undergoes a displacement $\mathrm{d}=(2.0 \mathrm{i}+3.0 \mathrm{j})$
 $\mathrm{F}=(5.0 \mathrm{i}+2.0 \mathrm{j}) \mathrm{N}$ asts on the particle. |

Work done by a spring

$$
W=\frac{1}{2} k\left(x_{i}^{2}-x_{f}^{2}\right)
$$

Example 7.6

A 0.500 kg mass is hung from a spring extending the spring by a distance $\mathrm{d}=0.2 \mathrm{~m}$
(a) What is the spring constant of the spring?
(b) How much work was done on the spring?
(a) $\boldsymbol{F}_{s}=-k x \quad H o o k ' s$ Law

$$
\begin{aligned}
& \left|F_{s}\right|=k d=m g \\
& k=m g / d=24.5 \mathrm{~N} / m
\end{aligned}
$$

(b)

$$
\begin{aligned}
W_{s} & =\frac{1}{2} k\left(x_{i}^{2}-x_{f}^{2}\right) \\
& =0-\frac{1}{2} k d^{2}=-0.5 J
\end{aligned}
$$

Suppose this measurement is made on an elevator going up with a. what is $d \boldsymbol{\&} k$?

