CHAPTER 8

Potential Energy and Conservation of Energy

Kinetic energy: Energy associated with motion
Potential energy: Energy associated with position

Potential energy U:

$>$ Can be thought of as stored energy that can either do work or be converted to kinetic energy.
$>$ When work gets done on an object, its potential and/or kinetic energy increases.
\Rightarrow There are different types of potential energy:

* Gravitational energy
* Elastic potential energy (energy in an stretched spring)
* Others (magnetic, electric, chemical, ...)

Gravitational Potential Energy

Potential Energy $(\mathbf{P E}) \equiv$ Energy associated with position or configuration of a mass.

Consider a problem in which the height of a mass above the Earth changes from y_{1} to y_{2} :
$\mathbf{W}_{\text {grav }}=$?
$U P \Rightarrow W_{g}=-m g s=-m g\left(y_{2}-y_{1}\right)$
Down $\Rightarrow \mathrm{W}_{\mathrm{g}}=+\mathrm{mg} \mathrm{s}$

$$
\mathbf{W}_{g}=-m g\left(y_{2}-y_{1}\right)
$$

$$
\begin{aligned}
& \text { mgy } \equiv U_{g} \equiv \text { gravitational potential energy }(P E) \\
& \Rightarrow U_{2}-U_{1}=\Delta U \\
& \Rightarrow W_{g}=-m g\left(y_{2}-y_{1}\right)=U_{1}-U_{2}=-\Delta U_{g} \\
& \\
& \quad W_{g}=-\Delta U_{g}
\end{aligned}
$$

Changing the configuration of an interacting system requires work example: lifting a book
The change in potential energy is equal to the negative of the work done

$$
\Delta U_{g}=-W
$$

But Work/Kinetic Energy Theorem says: $W=\Delta K$

$$
\begin{gathered}
W=-\Delta U=\Delta K \\
\Delta K+\Delta U=0
\end{gathered}
$$

Total Mechanical Energy

The change in potential energy is equal to the negative of the work done

$\Delta U=-W$

But Work/Kinetic Energy Theorem says: $W=\Delta K$
$W=-\Delta U=\Delta K, \square \Delta K+\Delta U=0$
$\Delta K+\Delta U=0$
$K_{2}-K_{1}+U_{2}-U_{1}=0$
$K_{2}+U_{2}=K_{1}+U_{1}=$ constant $=E \equiv$ Total mechanical energy
NOTE that the ONLY forces is gravitational energy which doing the work
The sum of K and U for any state of the system = the sum of K and U for any other state of the system
In an isolated system acted upon only by conservative forces
Mechanical Energy is conserved

103 PHYS
Dr. Abrallah M.Azzeer

Example 8.1

A bowler drops bowling ball of mass 7 kg on his toe. Choosing floor level as $\mathrm{y}=\mathbf{0}$, estimate the total work done on the ball by the gravitational force as the ball falls.

Let's assume the top of the toe is 0.03 m from the floor and the hand was 0.5 m above the floor.
$U_{i}=m g y_{i}=7 \times 9.8 \times 0.5=34.3 \mathrm{~J}$
$U_{f}=m g y_{f}=7 \times 9.8 \times 0.03=2.06 \mathrm{~J}$
$W_{g}=-\Delta U=-\left(U_{f}-U_{i}\right)=32.24 \mathrm{~J} \cong 30 \mathrm{~J}$

b) Perform the same calculation using the top of the bowler's head as the origin. Assuming the bowler's height is 1.8 m
What has to change?
First we must re-compute the positions of ball at the hand and of the toe.
Assuming the bowler's height is 1.8 m , the ball's original position is -1.3 m,
and the toe is at -1.77 m.
$\qquad U_{i}=m g y_{i}=7 \times 9.8 \times(-1.3)=-89.2 \mathrm{~J}$
$U_{f}=m g y_{f}=7 \times 9.8 \times(-1.77)=-121.4 \mathrm{~J}$
$W_{g}=-\Delta U=-\left(U_{f}-U_{i}\right)=32.2 \mathrm{~J} \cong 30 \mathrm{~J}$
Dr. Abdillah M.AZKeer
103 PHYs

Conservative Forces

(a) A force is conservative if work done by that force acting on a particle moving between points is independent of the path the particle takes between the two points

(b) The total work done by a conservative force is zero when the particle moves around any closed path and returns to its initial position

Conservative Forces

To repeat the idea on the last slide: We have seen that the work done by a conservative force does not depend on the path taken.

$$
\square W_{1}=W_{2}
$$

Therefore the work done in a closed path is 0 .

$$
\begin{aligned}
\square W_{N E T} & =W_{1}-W_{2} \\
& =W_{1}-W_{1}=0
\end{aligned}
$$

Non-conservative forces:
A force is non-conservative if it causes a change in mechanical energy; mechanical energy is the sum of kinetic and potential energy.
Example: Frictional force.
*This energy cannot be converted back into other forms of energy (irreversible).
Work does depend on path.
For straight line $W=-\boldsymbol{f} \boldsymbol{d}$
For semi-circle path $W=-f(\pi d / 2)$

Work varies depending on the path. Energy is dissipated

The presence of a non-conservative force reduces the ability of a system to do work (dissipative force)

Energy dissipation: e.g. sliding friction

As the parts scrape by each other they start small-scale vibrations, which transfer energy into atomic motion

The atoms' vibrations go back and forththey have energy, but no average momentum. The increased atomic vibrations appear to us as a rise in the temperature of the parts. The temperature of an object is related to the thermal energy it has. Friction transfers some energy into thermal energy

Three identical balls are thrown with the same initial speed from the top of a building. Total Energy $\begin{gathered} E=K+U_{g}=\frac{1}{2} m v_{0}^{2}+m g h \\ A t y=0 \\ E=\frac{1}{2} m v^{2}=\frac{1}{2} m v_{0}^{2}+m g h \\ v=\sqrt{v_{0}^{2}+2 g h} \end{gathered}$ $\begin{gathered} v_{0}=v_{0} \cos \theta \hat{i}+v_{0} \sin \theta \hat{j} \\ \hat{i}: v_{x}=v_{0} \cos \theta \\ \hat{j}: v_{y}=v_{0} \sin \theta-g t \\ y=h+v_{0} \sin \theta \cdot t-\frac{1}{2} g t^{2}=0 \\ t=\frac{v_{0} \sin \theta+\sqrt{v_{0}^{2} \sin ^{2} \theta+2 g h}}{g} \\ v_{y}=-\sqrt{v_{0}^{2} \sin ^{2} \theta+2 g h} \\ v=\sqrt{v_{x}^{2}+v_{y}^{2}}=\sqrt{v_{0}^{2} \sin ^{2} \theta+2 g h+v_{0}^{2} \cos ^{2} \theta} \\ =\sqrt{v_{0}^{2}+2 g h} \end{gathered}$
103 PHYS Dr. Abilallalt M.Azzeer

- READ Quick Quiz 8.7 \& 8.8

A ball connected to a massless spring suspended vertically. What forms of potential energy are associated with the ball-spring-Earth system when the ball is displaced downward?

- READ Example 8.2

A ball is dropped from a height h above the ground. Initially, the total energy of the ball-Earth system is potential energy, equal to mgh relative to the ground. At the elevation y, the total energy is the sum of the kinetic and potential energies.

Example 8.3

Nose crusher?
A bowling ball of mass m is suspended from the ceiling by a cord of length L. The ball is released from rest when the cord makes an angle θ_{A} with the vertical.
(a) Find the speed of the ball at the lowest point B.

(b) What is the tension T_{B} in the cord at point B ?
(c) The ball swings back. Will it crush the operator's nose?

Example 8.4

(a) An actor uses some clever staging; to make his entrance.
$M_{\text {actor }}=65 \mathrm{~kg}, M_{\text {bag }}=130 \mathrm{~kg}, \mathrm{R}=3 \mathrm{~m}$
What is the max. value of θ can have before sandbag lifts of the floor?
(b) Free-body diagram for actor at the bottom of the circular path. (c) Free-body diagram for sandbag.

$$
\begin{aligned}
& K_{f}+U_{f}=K_{i}+U_{i} \\
& \frac{1}{\mathbf{2}} M_{\text {actor }} v_{f}^{2}+0=0+M_{\text {actor }} g y_{i} \\
& \boldsymbol{y}_{i}=\boldsymbol{R}-\boldsymbol{R} \cos \theta=\boldsymbol{R}(\mathbf{1}-\cos \theta)
\end{aligned}
$$

$$
v_{f}^{2}=2 g R(1-\cos \theta)
$$

How we can obtain v ????

$$
\sum F_{y}=T-M_{a c t o r} g=M_{\text {actor }} \frac{v_{f}^{2}}{R}
$$

$$
\Rightarrow T=M_{a c t o r} g+M_{a c t o r} \frac{v_{f}^{2}}{R}
$$

For the sandbag not to move $\Rightarrow a=0 \Rightarrow T=M_{\text {bag }} g$

$$
\theta=60^{\circ}
$$

^- سقطت كرة كتلتها 200 من ارتفاع 4 m على أرض مستوية فارتدت الى ارتفاع m 4 m 2.5 ، الطاقة الحركية
(a) 2.95 J
(b) 4.90 J
(c) 7.85 J
(d) 12.70 J

Q- تبدا سيارة كتلتها 1500 kg في الحركة الي أسفل من قمة مرتفع بسرعة 30 m/s 30 وتصل الى الأسفل ثم تصعد المى أعلى قمة مرتفع آخروتصل اليه بسرعة 20 m/s ، إذا كانت قمتي المرتفعين متساوية فإن الشغل المبذول بواسطة قوة الاحتكاك تساوي:

(a) $\mathbf{2 0 0 , 0 0 0 ~ J}$
(b) $400,000 \mathrm{~J}$
(c) $\mathbf{4 5 0 , 0 0 0} \mathrm{J}$
(d) $500,000 \mathrm{~J}$

- ا شاحنة كتلتها ثلاثة أضعاف كتلة سيارة وتتحرك ضعف سرعة السيارة • إذا كانت K تمثل الطاقة الحركية للسيارة فإن الطاقة الحركية للشاحنة هي:
(a) K
(b) 6 K
(c) 12 K
(d) 24 K

