Final Exam - Allowed time: 3 hours
 Calculators are not permitted

Q1.
(a) Let $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -1 \\ 0 & 1 \\ 1 & 0\end{array}\right)$. Compute, if possible, $A B$ and $B A$.
(c) Solve by using Gauss-Jordan Elimination Method the linear system

$$
\left\{\begin{array}{rlr}
x+y-z & = & -3 \\
-2 y+5 z & =1 \\
x+2 y+z & =1
\end{array}\right.
$$

Q2.
(b) Find the elements of the conic section $y=4 x-x^{2}$ and then sketch it.

Q3.
(d) Give the Cartesian coordinates of the points in polar coordinates

$$
M\left(\sqrt{2}, \frac{\pi}{4}\right) \quad \text { and } \quad N(2, \pi)
$$

Q4.
(a) Let $z=x y^{2}+\sin (x y)$, where $x=s^{2} t$ and $y=\frac{t}{s}$. Use the chaine rule to compute the partial derivatives $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
(b) Solve the differential equation: $x y^{\prime}+y=3 x^{2}+1$.

