Final Exam - Allowed time: 3 hours Calculators are not permitted

Q1.

[3] (a) Let
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$. Compute, if possible, AB and BA .

[2] (b) Compute the determinant
$$\begin{vmatrix} 1 & 1 & -1 \\ 0 & -2 & -5 \\ 1 & 2 & 1 \end{vmatrix}$$
.

(c) Solve by using Gauss-Jordan Elimination Method the linear system

$$\begin{cases} x + y - z &= -3 \\ -2y + 5z &= 1 \\ x + 2y + z &= 1 \end{cases}$$

Q2.

[4]

[3]

[2,3,3]

- [4] (a) Find the standard equation of the ellipse with endpoints of minor axis are (1, 4) and (1, -2) and the distance between foci is 8, and then sketch its graph.
 - (b) Find the elements of the conic section $y = 4x x^2$ and then sketch it.

(a) Compute the integrals:
(i)
$$\int 8x (x^2 + 24)^3 dx$$
, (ii) $\int (\ln x)^2 dx$, (iii) $\int \frac{3x}{x^2 - 2x - 8} dx$.

[3] (b) Sketch the region bounded by the curves $y = x^2$, y = x + 3, x = 1 and x = 2 and compute its area.

- [4] (c) The region bounded by the curves $y = 4x x^2$ and y = x is rotated about the y-axis to form a solid S. Use the method of cylindrical shells to find the volume of S.
 - (d) Give the Cartesian coordinates of the points in polar coordinates

$$M\left(\sqrt{2}, \frac{\pi}{4}\right)$$
 and $N(2, \pi)$.

Q4.

[2]

(a) Let $z = xy^2 + \sin(xy)$, where $x = s^2 t$ and $y = \frac{t}{s}$. Use the chaine rule to compute the partial derivatives $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

[4] (b) Solve the differential equation:
$$xy' + y = 3x^2 + 1$$
.