Mid-Term Exam

Allowed time: 2 hours

Calculators are not permitted

1. Find the elements of the conic section of equation $y^{2}-4 y-8 x-12=0$, then sketch it.
2. Find the standard equation of the ellipse with foci at $(1,5),(1,-3)$ and vertex at $(1,6)$, then sketch it.
3. Calculate, whenever it is possible, $A B$ and $2 A+B^{T}$, for matrices

$$
A=\left(\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & 2 \\
1 & 1
\end{array}\right)
$$

4. Consider the system of linear equations

$$
\left\{\begin{aligned}
x-y+z & = \\
2 x+y+5 z & =1 \\
2 y+3 z & =-6
\end{aligned}\right.
$$

(a) Solve this system by using Kramer' rule.
(b) Solve this system by using Gauss elimination method.
5. Evaluate the integrals
(a) $\int\left(2 e^{x}+\frac{3}{x}-4 \sin x\right) d x$.
(b) $\int 6 \cos x(\sin x)^{5} d x$.
(c) $\int \frac{9 x^{2}}{\left(x^{3}+1\right)^{4}} d x$.
(d) $\int\left(3 x^{2}+2 x+1\right) \ln x d x$.

Mid-Term Exam

Allowed time: 2 hours

Calculators are not permitted

1. Find the elements of the conic section of equation $4 y^{2}=-9 x^{2}+18 x+27$, then sketch it.
2. Find the standard equation of the parabola with vertex $(2,3)$ and focus $(2,1)$, then sketch it.
3. Calculate, whenever it is possible, $A+B^{T}$ and $A B$, for matrices

$$
A=\left(\begin{array}{lll}
1 & 1 & 2 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right), \quad B=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
1 & 1 & -2
\end{array}\right)
$$

4. Consider the system of linear equations

$$
\left\{\begin{array}{r}
2 x-2 y+z=2 \\
x-y+z=2 \\
2 x+2 y-z=2
\end{array}\right.
$$

(a) Solve this system by using Kramer' rule.
(b) Solve this system by using Gauss-Jordan elimination method.
5. Evaluate the integrals
(a) $\int\left(4 x^{3}-\frac{2}{x^{3}}+e^{x}\right) d x$.
(b) $\int 20 x^{3}\left(x^{4}+2\right)^{4} d x$.
(c) $\int \sec ^{2} x \ln |\sin x| d x$.
(d) $\int \frac{x+1}{(x-2)(x-1)} d x$.

Mid-Term Exam

Allowed time: 2 hours

Calculators are not permitted

1. Find the elements of the conic section of equation $4 x^{2}+9 y^{2}-8 x-36 y+4=0$, then sketch it.
2. Find the standard equation of the hyperbola with focci $(2,3),(-6,3)$ and the $[4]$ distance between its two vertices equals to 6 , then sketch it.
3. Calculate, whenever it is possible, $2 A-B^{T}$ and $A B$, for matrices

$$
A=\left(\begin{array}{rrr}
2 & 1 & -1 \\
1 & 3 & -2
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & 2 \\
0 & 1 \\
-1 & 3
\end{array}\right)
$$

4. Consider the system of linear equations

$$
\left\{\begin{array}{r}
2 x+y+z=1 \\
x-y=0 \\
y-z=3
\end{array}\right.
$$

(a) Solve this system by using Cramer' rule.
(b) Solve this system by using Gauss elimination method.
5. Evaluate the integrals
(a) $\int \frac{4 x^{3}+1}{\sqrt{x^{4}+x+1}} d x$.
(b) $\int(x+1) e^{x^{2}+2 x} d x$.
(c) $\int(2 x+1) \cos x d x$.
(d) $\int(2 x+1) \ln x d x$.

Mid-Term Exam

Allowed time: 2 hours

Calculators are not permitted

1. Find the elements of the conic section of equation $y^{2}-2 y+4 x=3$, then sketch it.
2. Find the standard equation of the ellipse with vertices at $(-4,2),(6,2)$ and one of [4] its two focci at $(5,2)$, then sketch it.
3. Calculate, whenever it is possible, the products $2 A B$ and $B A$ of matrices

$$
A=\left(\begin{array}{rrr}
1 & -1 & 1 \\
1 & 1 & 0
\end{array}\right), \quad B=\left(\begin{array}{rr}
1 & -1 \\
0 & 1 \\
2 & 1
\end{array}\right)
$$

4. Consider the system of linear equations

$$
\left\{\begin{aligned}
x-2 y+z & =4 \\
-x+2 y+z & =-2 \\
2 x-3 y-z & =3
\end{aligned}\right.
$$

(a) Solve this system by using Cramer' rule.
(b) Solve this system by using Gauss elimination method.
5. Evaluate the integrals
(a) $\int(3 x-1) \sqrt{3 x^{2}-2 x+1} d x$.
(b) $\int(5 x+4)^{5} d x$.
(c) $\int x^{3} \ln x d x$.
(d) $\int \frac{3 \cos (3 x)+2 \sin (2 x)}{\sin (3 x)-\cos (2 x)} d x$.

Mid-Term Exam

Allowed time: 2 hours

Calculators are not permitted

1. Find the elements of the conic section of equation $y^{2}-4 x^{2}+6 y-32 x-59=0$, $[5$ then sketch it.
2. Find the standard equation of the parabola of focus $F(-1,-2)$ and directrix of $[4]$ equation $y=0$, then sketch it.
3. Calculate the product $A B$ of matrices

$$
A=\left(\begin{array}{lll}
0 & 1 & 2 \\
1 & 2 & 3 \\
2 & 3 & 4
\end{array}\right), \quad B=\left(\begin{array}{rrr}
0 & -4 & 1 \\
1 & 0 & 2 \\
-2 & 1 & 0
\end{array}\right)
$$

4. Consider the system of linear equations

$$
\left\{\begin{array}{l}
x+y+z=9 \\
x-y+z=3 \\
x+y-z=1
\end{array}\right.
$$

(a) Solve this system by using Cramer' rule.
(b) Solve this system by using Gauss-Jordan elimination method.
5. Evaluate the integrals
(a) $\int 10 x^{3}\left(x^{4}+1\right)^{\frac{3}{2}} d x$.
(b) $\int 4 x \cos (2 x) d x$.
(c) $\int \frac{\frac{1}{x}}{2+\ln x} d x$.
(d) $\int x \sec ^{2} x d x$.

Mid-Term Exam

Allowed time: 2 hours

Calculators are not permitted

1. Find the elements of the conic section of equation $9 x^{2}+4 y^{2}+18 x-16 y-11=0$ and then sketch it.
2. Find the standard equation of the hyperbola of focci $F_{1}(6,2), F_{2}(-4,2)$ and one of its vertices $V(5,2)$, then sketch it.
3. Calculate the product $A B$ of matrices

$$
A=\left(\begin{array}{lll}
1 & -2 & 2 \\
2 & -1 & 2 \\
2 & -2 & 3
\end{array}\right), \quad B=\left(\begin{array}{rrr}
1 & 2 & -2 \\
-2 & -1 & 2 \\
-2 & -2 & 3
\end{array}\right) .
$$

4. Consider the system of linear equations

$$
\left\{\begin{array}{r}
x+y+z=2 \\
x-y+2 z=3 \\
2 x+z=3
\end{array}\right.
$$

(a) Solve this system by using Cramer' rule.
(b) Solve this system by using Gauss-Jordan elimination method.
5. Evaluate the integrals
(a) $\int 18 x^{2}\left(x^{3}+1\right)^{5} d x$.
(b) $\int 4 x e^{2 x} d x$.
(c) $\int \frac{x}{\sqrt{2 x^{2}+1}} d x$.
(d) $\int \frac{3 x+5}{(x-1)(x+3)} d x$.

First Mid-Term Exam

Allowed time: 90 min

Calculators are not permitted

1. Let $A=\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right), B=\left(\begin{array}{ccc}0 & 2 & 0 \\ 2 & 0 & -2\end{array}\right)$ and $C=\left(\begin{array}{ll}1 & 1 \\ 0 & 1 \\ 1 & 1\end{array}\right)$. Compute (if possible):
(i) $A+B C$,
(ii) $A B+C$
2. Compute the determinant $\left|\begin{array}{lll}1 & 2 & 3 \\ 1 & 1 & 2 \\ 1 & 1 & 1\end{array}\right|$.
3. Solve by Gauss elimination method the system of linear equations

$$
\left\{\begin{array}{r}
x-y+z=2 \\
2 x-y-3 z=1 \\
3 x-2 y-4 z=1
\end{array}\right.
$$

4. Find the elements of the following conic section and then sketch it.

$$
4 x^{2}-9 y^{2}-8 x+36 y+4=0 .
$$

5. Find the standard equation of the ellipse with foci $F_{1}(2,3)$ and $F_{2}(2,-5)$ and vertex $V_{1}(2,4)$ and then sketch it.

Second Mid-Term Exam

Allowed time: 90 min

Calculators are not permitted

1. Evaluate the integrals:
2. (a) Sketch the region \mathcal{R}_{1} bounded by the curves

$$
\begin{equation*}
y=x^{2}+2, \quad y=3 x . \tag{4}
\end{equation*}
$$

(b) Find the area of the region \mathcal{R}_{1} described in part (a).
(a) $\int\left(e^{x}+x\right)^{3}\left(e^{x}+1\right) d x$;
(b) $\int x \cos \left(x^{2}\right) d x$;
(c) $\int x \cos (x) d x$;
(d) $\int x^{3} \ln (x) d x$;
(e) $\int \frac{3 x^{2}+2}{x^{3}+2 x+2} d x$;
(f) $\int \frac{3 x}{(x+1)(x-2)} d x$.
3. (a) Sketch the region \mathcal{R}_{2} bounded by the curves

$$
\begin{equation*}
y=4-x^{2}, \quad y=0, \quad x=1 . \tag{1}
\end{equation*}
$$

(b) Find the volume of the solid generated by rotating the region \mathcal{R}_{2} in part (a) about the y-axis.

