كليّة العلوم ـ قسم الرّياضيّات رياضيات عامّة (٢) الفصل الثَّاني ١٤٤٣ هـ

Final Exam - Allowed time: 3 hours Calculators are not permitted

Q1.

[3] (a) Let
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$. Compute, if possible, AB and BA .

- $\begin{bmatrix} -1 & 6 & 2 \\ 0 & 0 & 5 \\ 0 & 3 & 4 \end{bmatrix}.$ (b) Compute the determinant [3]
- [4](c) Solve by using Gauss Elimination Method the linear system

$$\begin{cases} x + y + 3z &= 7 \\ -2x - y - z &= -4 \\ 3x + 2y - 2z &= -1 \end{cases}$$

Q2.

- [4](a) Find the standard equation of the ellipse with foci (3,6) and (3,-2)and vertex (3, -3) and then sketch it.
- (b) Find the elements of the conic section $9x^2 4y^2 18x 24y + 9 = 0$ [4]and then sketch it.

Q3.

- (a) Compute the integrals: (i) $\int x\sqrt{x^2+4} \, dx$, (ii) $\int \tan^{-1} x \, dx$, (iii) $\int \frac{x+3}{(3-x)(x-2)} \, dx$. [2,3,3]
- (b) Sketch and find the area of the region bounded by the curves: [3]

$$y = 4 - x^2$$
 and $y = 3$.

(c) The region bounded by the curves $y = \sqrt{x}$, y = 1, y = 2 and x = 0 is [4]rotated about the y-axis to form a solid S. Find the volume of S.

Q4.

- (a) We define z(x,y) implicitly by the equation $x^2y + \sin(xyz) = 1$. Com-[3] pute the partial derivative $\frac{\partial z}{\partial u}$.
- (b) Solve the differential equation: $xy^2 + y'e^{-x} = 0$. [4]

Final Exam - Allowed time: 3 hours Calculators are not permitted

Part 1: Multiple Choice Questions:

1. The center of the conic section of equation $4x^2 + 8x - y^2 + 2y - 1 = 0$ is [2]

a.	<i>b</i> .	c.	d.	Answer:
(-1, 1)	(1, -1)	(4,1)	(4, -1)	

[2]2. The equation of the ellipse of focci (-3,6); (-3,2) and length of major axis 14 is given by:

a.
$$\frac{(x-6)^2}{14} + \frac{(y-2)^2}{3} = 1$$
 b. $\frac{(x+3)^2}{45} + \frac{(y-4)^2}{49} = 1$ Answer:

c. $\frac{(x-3)^2}{9} + \frac{(y+6)^2}{4} = 1$ d. $\frac{(x+3)^2}{9} + \frac{(y-2)^2}{36} = 1$

3. If $A = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & -3 & 2 \\ 1 & 2 & -1 \end{bmatrix}$, then $A(B^T)$ equals [2]

a.	<i>b</i> .	c.	d.	Answer:
$\left[\begin{array}{ccc} 0 & 3 & 4 \\ 0 & 2 & 2 \end{array}\right]$	$\left[\begin{array}{cc} 0 & 3 \\ 0 & 2 \end{array}\right]$	$\left[\begin{array}{cc} 7 & -3 \\ -7 & 4 \end{array}\right]$	undefined	

4. The determinant $\begin{vmatrix} 1 & 1 & 1 & 2 \\ 1 & 1 & 2 & 2 \\ 1 & 2 & 2 & 2 \\ 2 & 2 & 3 & 4 \end{vmatrix}$ is equal to [2]

a.	<i>b</i> .	c.	d.	Answer:
-2	0	6	8	

كليّة العلوم ـ قسم الرّياضيّات الفصل الأوّل ١٤٤٣ هـ

[2]

5. The integral $\int x^3 (2+x^4)^5 dx$ is equal to

a.	<i>b</i> .	c.	d.	Answer:
$\frac{\left(2+x^4\right)^6}{24} + C$	$\frac{x^4\left(2+x^4\right)^6}{24} + C$	$\frac{\left(2+x^4\right)^6}{6} + C$	$\frac{x^4(2+x^4)^5}{4} + C$	

[2]

6. The volume of the solid, obtained by revolving the region bounded by the curves $y = x^2$, $y = x^3$ about the x-axis, is equal to:

a.	b.	c.	d.	Answer:
π	π	2π	2π	
$\frac{1}{7}$	$\overline{12}$	$\overline{15}$	$\overline{35}$	
		_		

[2]

7. The point with rectangular coordinates $\left(-1,\sqrt{3}\right)$, has polar coordinates:

a.	<i>b</i> .	c.	d.	Answer:
$\left(2,\frac{\pi}{3}\right)$	$\left(2,\frac{2\pi}{3}\right)$	$\left(\sqrt{3}, \frac{\pi}{2}\right)$	$\left(\sqrt{3}, \frac{\pi}{4}\right)$	

[2]

8. Let $f(x,y) = x^3y^2 + y\sin\frac{x}{y}$. The partial derivative $\frac{\partial f}{\partial x}$ is equal to:

a.	b.	c.	d.	Answer:
$3x^2y^2 + \cos x$	$6x^2y + \cos x$	$3x^2y^2 + \cos\frac{x}{y}$	$6x^2y + \cos\frac{x}{y}$	
		9	9	

[2]

9. If y = y(x) is defined implicitly by $e^{xy} = xy + 1$, for x, y > 0, then $\frac{dy}{dx}$ is equal to:

a.	b.	c.	d.	Answer:
$xe^{xy} - y$	$-\frac{e^{xy}}{xy}$	$-\frac{e^{xy}}{x}$	$-\frac{y}{x}$	

[2]

10. The general solution of the differential equation $y' - \frac{3x^2}{2y} = 0$ is:

a.
$$2y = 3x^2 + C$$
 $y - x^3 \ln |2y| = C$ $z - x^3 + C$ $y - x^3 -$

Part 2: Essay Questions:

- [4] 11. Find the elements of the conic section $4x^2 9y^2 8x 36y 68 = 0$ and then sketch it.
- [4] 12. Solve by using Gauss Elimination Method the system

$$\begin{cases} x+y+z = 2\\ x-y+2z = 0\\ 2x+z = 2 \end{cases}$$

- [4] 13. Compute the integral $\int \frac{2x^2 2x 2}{x(x+1)(x-1)} dx.$
- [4] 14. If $w = x^2 + xy + 3y^2$, $x = u^2 + v$ and $y = v^2$, use the chain rule to compute $\frac{\partial w}{\partial u}$.
- [4] 15. Find the general solution of the linear differential equation $xy' + 2y = 5x^3$.

Make Up of The Final Exam - Allowed time: 3 hours Calculators are not permitted

Part 1: Multiple Choice Questions:

1. The center of the conic section of equation $x^2 + 2y^2 + 8x - 4y + 14 = 0$ is [2]

a.	b.	c.	d.	Answer:
(-1,2)	(1, -2)	(-4,1)	(4, -1)	

[2]2. The equation of the hyperbola of vertices (4,2); (-2,2) and focus (5,2) is given by:

a.
$$\frac{(x-4)^2}{5} - \frac{(y+2)^2}{2} = 1$$
 b. $\frac{(y-2)^2}{2} - \frac{(x+4)^2}{5} = 1$ Answer:

c. $\frac{(x-1)^2}{9} - \frac{(y-2)^2}{7} = 1$ d. $\frac{(y+2)^2}{7} - \frac{(x+1)^2}{9} = 1$

3. If $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 & 0 \\ 2 & -2 & 1 \end{bmatrix}$, then the product AB equals [2]

a.	<i>b</i> .	c.	d.	Answer:
$\left[\begin{array}{cc} 0 & 0 \\ 2 & -2 \end{array}\right]$	$\left[\begin{array}{ccc} 0 & 1 & 0 \\ 2 & -1 & 1 \end{array}\right]$	$\left[\begin{array}{ccc} 0 & 0 & 0 \\ 2 & -2 & 1 \end{array}\right]$	undefined	

4. The determinant $\begin{vmatrix} 1 & 2 & 2 & 4 \\ 2 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 \\ 1 & 2 & 2 & 4 \end{vmatrix}$ is equal to [2]

a.	<i>b</i> .	c.	d.	Answer:
-16	0	4	16	

كليّة العلوم ـ قسم الرّياضيّات رياضيات عامّة (٢) الفصل الأوّل ١٤٤٣ هـ

[2]

5. The integral $\int (x+1)\sqrt{2x^2+4x+3} \ dx$ is equal to

$a. \left(\frac{x^2}{2} + x\right)\sqrt{\frac{2x^3}{3} + 2x^2 + 3x} + C$	$b. \ \frac{1}{6} \left(2x^2 + 4x + 3\right)^{\frac{3}{2}} + C$	Answer:
$c. \ \frac{1}{2\sqrt{2}} \left(4x^2 + 8x + 6\right)^{\frac{3}{2}} + C$	$d. \sqrt{2x^2 + 4x + 3} + C$	

[2]

6. The volume of the solid, obtained by revolving the region bounded by the curves $y = x^2$, $y = x^3$ about the y-axis, is equal to:

\overline{a} .	<i>b</i> .	c.	d.	Answer:
π	π	2π	2π	
$\overline{10}$	$\overline{12}$	$\overline{15}$	$\overline{35}$	

[2]

7. The point with rectangular coordinates (-1,1), has polar coordinates:

a.	b.	c.	d.	Answer:
$\left(1,\frac{\pi}{2}\right)$	$(1,\pi)$	$\left(\sqrt{2}, \frac{\pi}{4}\right)$	$\left(\sqrt{2}, \frac{3\pi}{4}\right)$	

[2]

8. Let $f(x,y) = \frac{x^2}{y}e^{xy}$. The partial derivative $\frac{\partial f}{\partial x}$ is equal to:

a.	<i>b</i> .	c.	d.	Answer:
$\frac{2x}{y}e^{xy}$	$2xe^{xy}$	$\frac{2x}{y}e^{xy} + x^2e^{xy}$	$\frac{2x}{y}e^{xy} + \frac{x^2}{y}e^y$	

[2]

9. If y = y(x) is defined implicitly by $e^{xy} = x^2y^2 + 1$, for x, y > 0, then $\frac{dy}{dx}$ is equal to:

a.	b.	c.	d.	Answer:
$xe^{xy} - 2x^2y$	$-\frac{e^{xy}}{x^2y^2}$	$-\frac{e^{xy}}{2x^2y}$	$-\frac{y}{x}$	

[2] 10. The general solution of the differential equation $2y'y - \frac{\sqrt{x}}{y} = 0$ is:

$$\begin{bmatrix} a. \\ y^2 = \frac{2}{3}x^{\frac{3}{2}}ln|y| + C \end{bmatrix} y^2 - \sqrt{x}\ln|y| = C \begin{bmatrix} c. \\ y^3 = x^{\frac{3}{2}} + C \end{bmatrix} y^2 - \frac{x^{\frac{3}{2}}}{y^2} = C \begin{bmatrix} Answer: \\ y^2 - \frac{x^{\frac{3}{2}}}{y^2} \end{bmatrix}$$

Part 2: Essay Questions:

- [4] 11. Find the elements of the conic section $4x^2 + 9y^2 + 8x 36y + 4 = 0$ and then sketch it.
- [4] 12. Solve by using Gauss-Jordan Elimination Method the system

$$\begin{cases} 2x + y + z &= -1\\ x + 2y + z &= 0\\ x + y + 2z &= 1 \end{cases}$$

- [4] 13. Compute the integral $\int \frac{3x+2}{x^2(x+1)} dx$.
- [4] 14. If $w = x^2 3xy + 2y^2$, x = u + v and y = u v, use the chain rule to compute $\frac{\partial w}{\partial v}$.
- [4] 15. Find the general solution of the differential equation $y' + 2xy = 3x^2e^{-x^2}$.

Final Exam - Allowed time: 3 hours Calculators are not permitted

Q1.

[4] (a) Let
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 0 \\ 1 & -1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ 1 & 1 \end{pmatrix}$ and $C = \begin{pmatrix} 1 & 2 \\ -2 & 0 \end{pmatrix}$. Compute (if possible):

(i) AB , (ii) AC .

[3] (b) Compute the determinant
$$\begin{vmatrix} 4 & 1 & 5 \\ 0 & 3 & 0 \\ 4 & 2 & 5 \end{vmatrix}.$$

[4] (c) Solve by using Gauss Elimination Method the system
$$\begin{cases} x+2z &= 1\\ 3x+y &= -1\\ 2y-3z &= 1 \end{cases}$$

Q2.

[4] (a) Find the standard equation of the hyperbola with foci
$$(1, -4)$$
 and $(1, 6)$ and vertex $(1, 4)$ and then sketch it.

[4] (b) Find the elements of the conic section
$$9x^2 + 4y^2 + 18x - 24y + 9 = 0$$
 and then sketch it.

Q3.

[2,2,3] (a) Compute the integrals: (i)
$$\int 4x^3 (1+2x^4)^5 dx$$
, (ii) $\int x \cos(2x) dx$, (iii) $\int \frac{2x-1}{x(x-1)} dx$.

[3] (b) Find the area of the region bounded by the curves:

$$x = y^2$$
 and $x = y + 2$.

[3] (c) The region bounded by the curves
$$x = 4$$
, $y = 0$ and $y = \sqrt{x}$ is rotated about the x -axis to form a solid S . Find the volume of S .

Q4.

[4] (a) Find the partial derivatives f_x, f_y of the function

$$f(x,y) = xy^2 + \ln(x^2 + y).$$

[4] (b) Solve the linear differential equation: $xy' + y = 6x^2$ with the condition y(1) = 1.

Final Exam - Allowed time: 3 hours Calculators are not permitted

Q1.

[4] (a) Let
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 1 & 1 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \end{pmatrix}$. Compute (if possible): (i) AB , (ii) BA .

[3] (b) Compute the determinant
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 2 & 1 \\ 0 & 0 & 1 & 0 \\ 2 & 1 & 2 & 1 \end{vmatrix}$$
.

[4] (c) Solve by Cramer method the system
$$\begin{cases} x+y+z &= 0 \\ y-z &= 1 \\ x+z &= 0 \end{cases}$$

Q2.

- [4] (a) Find the standard equation of the hyperbola with foci (1, -3) and (1, 7) and vertex (1, 6) and then sketch it.
- [4] (b) Find the elements of the conic section $x^2 + 8y 2x + 9 = 0$ and then sketch it.

Q3.

[3,2,2] (a) Compute the integrals:
(i)
$$\int \frac{x}{x^2 + 3x + 2} dx$$
, (ii) $\int xe^x dx$, (iii) $\int \frac{1 + \cos x}{x + \sin x} dx$.

[3] (b) Find the area of the surface determined by the curves:

$$y = 2 - x^2$$
 and $y = x$.

[3] (c) The region R between the curves y = 0, x = 1 and $y = x^2$ is rotated about the x-axis to form a solid of revolution S. Find the volume of S.

Q4.

[4] (a) Find the partial derivatives f_x, f_y for the function

$$f(x,y) = xy^2 - \sin(x^2y).$$

[4] (b) Solve the differential equation: $\frac{dy}{dx} + y = \frac{2x}{e^x}$.