1.6,1.7.1.8 FINDING THE MOTION OF AN OBJECT

Derivation of equations:

All equations that will be derived, are used to describe ONLY the motions with constant acceleration

$$
\begin{equation*}
\bar{v}=\frac{v+v_{o}}{2} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
a=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{v-v_{o}}{t} \tag{3}
\end{equation*}
$$

From (3), we will get

$$
a=\frac{v-v_{o}}{t}
$$

$$
v=v_{o}+a t
$$

From (1),we will get

$$
\bar{v}=\frac{x-x_{0}}{t} \Rightarrow x=x_{o}+\bar{v} t
$$

Then, substitute the average velocity (above) with that from (2)
$\Rightarrow \quad x=x_{o}+\left(\frac{v+v_{o}}{2}\right) t$

From (5), substitute the v with that from (4)
$\Rightarrow \quad x=x_{o}+\left(\frac{\left(v_{o}+a t\right)+v_{o}}{2}\right) t$

From (5), substitute the t with that from (4)
$\Rightarrow \quad x=x_{o}+\frac{1}{2}\left(v+v_{o}\right)\left(\frac{v-v_{o}}{a}\right)$
$\Rightarrow \quad x-x_{o}=\frac{1}{2 a}\left(v+v_{o}\right)\left(v-v_{o}\right)$
$\Rightarrow \quad v^{2}-v_{0}^{2}=2 a\left(x-x_{0}\right)$

Summary; Equations of motion with constant acceleration

$$
(x, v, a, t)
$$

$$
\begin{array}{lll}
v=v_{o}+a t & (v, a, t) & \text { withoutthe } e^{\prime \prime} x^{\prime \prime} \\
x-x_{o}=v_{o} t+\frac{1}{2} a t^{2} & (x, a, t) & \text { without } t h e^{\prime \prime} v^{\prime \prime} \\
x-x_{o}=\frac{1}{2}\left(v+v_{o}\right) t & (x, v, t) & \text { withoutthe } e^{\prime \prime} a^{\prime \prime} \\
v^{2}=v_{o}^{2}+2 a\left(x-x_{o}\right)(x, v, a) & \text { without the } e^{\prime \prime} t^{\prime \prime}
\end{array}
$$

Sign convention for quantity " x ", " v " and " a " is VERY IMPORTANT!

Sign convention :

$$
\begin{aligned}
& \text { Both " } v \text { " and " } \vec{"} \\
& \text { have opposite sign! }
\end{aligned}
$$

Kixax mix: E X A M P LE 1.3

A woman standing in front of a cliff claps her hands, and 2.50 s later she hears an echo. How far away is the cliff? Assume that the speed of sound is $343 \mathrm{~m} / \mathrm{s}$.

SOLUTION The total distance a sound travels in 2.50 s is

$$
x=v t=(343 \mathrm{~m} / \mathrm{s})(2.50 \mathrm{~s})=858 \mathrm{~m}
$$

The sound must travel to the cliff and back, so the cliff is half this distance away, which is $\frac{1}{2}(858 \mathrm{~m})=429 \mathrm{~m}$.

If the highway speed limit is raised from $55 \mathrm{mi} / \mathrm{h}$ to $65 \mathrm{mi} / \mathrm{h}$, how much time is saved on a 100 -mi trip made at the maximum permitted speed?

SOLUTION At $v_{1}=55 \mathrm{mi} / \mathrm{h}$ the time needed for the trip is $t_{1}=x / v_{1}$, and at v_{2} $=65 \mathrm{mi} / \mathrm{h}$ the time needed is $t_{2}=x / v_{2}$. Hence the time saved is

$$
\Delta t=t_{1}-t_{2}=\frac{x}{v_{1}}-\frac{x}{v_{2}}=\frac{100 \mathrm{mi}}{55 \mathrm{mi} / \mathrm{h}}-\frac{100 \mathrm{mi}}{65 \mathrm{mi} / \mathrm{h}}=0.28 \mathrm{~h}
$$

Since $1 \mathrm{~h}=60 \mathrm{~min}$, the time saved in minutes is

$$
\Delta t=(0.28 \mathrm{~h})(60 \mathrm{~min} / \mathrm{h})=17 \mathrm{~min}
$$

(1)

A car is stationary in front of a red traffic light. As the light turns green, a truck goe past at a constant velocity of $15 \mathrm{~m} / \mathrm{s}$. At the same moment, the car begins to accelerate at $1.25 \mathrm{~m} / \mathrm{s}^{2}$. When it reaches $25 \mathrm{~m} / \mathrm{s}$, the car continues at this velocity. When does the car pass the truck? How far have they gone from the traffic light at that time?

SOLUTION (a) The car's final velocity is $\nu_{1}=25 \mathrm{~m} / \mathrm{s}$, and the truck's constant velocity is $v_{2}=15 \mathrm{~m} / \mathrm{s}$ (Fig. 1.12). The car needs the time

$$
t_{1}=\frac{v_{1}}{a}=\frac{25 \mathrm{~m} / \mathrm{s}}{1.25 \mathrm{~m} / \mathrm{s}^{2}}=20 \mathrm{~s}
$$

to reach the velocity v_{1}. To find the distance the car covers during its acceleration, we use Eq. (1.11) with $v_{0}=0$ and $v_{f}=v_{1}$. The result is

$$
x_{1}=\frac{v_{1}^{2}}{2 a}=\frac{(25 \mathrm{~m} / \mathrm{s})^{2}}{(2)\left(1.25 \mathrm{~m} / \mathrm{s}^{2}\right)}=250 \mathrm{~m}=0.25 \mathrm{~km}
$$

If t is the total time the car needs to catch up with the truck, the car travels the further distance

$$
x_{2}=v_{1}\left(t-t_{1}\right)
$$

for a total distance of
$x=x_{1}+x_{2}=x_{1}+v_{1}\left(t-t_{1}\right)$

The truck meanwhile covers the same distance in the same time at the constant velocity v_{2}, so

$$
x=v_{2} t
$$

Setting equal these two formulas for x gives

$$
\begin{aligned}
v_{2} t & =x_{1}+v_{1}\left(t-t_{1}\right) \\
t & =\frac{x_{1}-v_{1} t_{1}}{v_{2}-v_{1}}=\frac{250 \mathrm{~m}-(25 \mathrm{~m} / \mathrm{s})(20 \mathrm{~s})}{(15 \mathrm{~m} / \mathrm{s})-(25 \mathrm{~m} / \mathrm{s})}=25 \mathrm{~s}
\end{aligned}
$$

The car passes the truck after 25 s .
(b) We can use either formula for x. The second one gives

$$
x=v_{2} t=(15 \mathrm{~m} / \mathrm{s})(25 \mathrm{~s})=375 \mathrm{~m}=0.38 \mathrm{~km}
$$ speeder car passes it and accelerates at a constant rate of $8 \mathrm{~km} / \mathrm{h} . \mathrm{s}$.

(a) When does the police car catch the speeder car?
(b) How fast the police car traveling when it catches the speeder?

The two solutions are

$$
\begin{aligned}
& t=0 \quad \text { corresponding to the initial conditions } \\
& \text { and } \quad t=\frac{80 \mathrm{~km} / \mathrm{h}}{4 \mathrm{~km} / \mathrm{h} . \mathrm{s}}=20 \mathrm{~s}
\end{aligned}
$$

The police car thus catches the speeder at time $t=20 \mathrm{~s}$
(b) The velocity of the police car is given by $v=v_{0}+a t$, with $v_{0}=0$:

$$
v_{p}=a t=(8 \mathrm{~km} / \mathrm{h} . \mathrm{s}) t
$$

At $t=20 \mathrm{~s}$, the velocity of the police car is;

$$
V_{\mathrm{p}}=(8 \mathrm{~km} / \mathrm{h} . \mathrm{s})(20 \mathrm{~s})=160 \mathrm{~km} / \mathrm{h}
$$

At this time, the speed of the police car is twice that of the speeder. This must be true because the average velocity of the police car is half its final velocity, and since both cars cover the same distance in the same time, they must have equal average velocities.

EXAMPLES

A motorist traveling at $90 \mathrm{~km} / \mathrm{h}$ applied the brakes for 5 s . If the deceleration was 3 $\mathrm{m} / \mathrm{s}^{2}$, then his final speed will be:
(a) $35 \mathrm{~m} / \mathrm{s}$
(b) $25 \mathrm{~m} / \mathrm{s}$
(c) $15 \mathrm{~m} / \mathrm{s}$
(d) $10 \mathrm{~m} / \mathrm{s}$

$$
v=v_{o}+a t=\frac{90 \times 1000}{3600}-3 \times 5=10 \mathrm{~m}
$$

A jet plane accelerates on a runway from rest at $4 \mathrm{~m} / \mathrm{s} 2$, the distance and the velocity of the jet after 5 sec is:
(a) $30 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{s}$
(b) $40 \mathrm{~m}, 10 \mathrm{~m} / \mathrm{s}$
$x=v_{o} t+\frac{1}{2} a t^{2}=50 m$
(c) $50 \mathrm{~m}, 20 \mathrm{~m} / \mathrm{s}$
(d) $100 \mathrm{~m}, 10 \mathrm{~m} / \mathrm{s}$

$$
v=v_{o}+a t=20 \mathrm{~m} / \mathrm{s}
$$

A car travels north at $40 \mathrm{~m} / \mathrm{s}$ for 1 h . It stops for 50 minutes and return south traveling 10 km for 20 minutes. Its average velocity and speed respectively are:
(a) $10.5,10 \mathrm{~m} / \mathrm{s}$
(b) $12.1,12.5 \mathrm{~m} / \mathrm{s}$
(c) $17.2,19.7 \mathrm{~m} / \mathrm{s}$
(d) $14.2,16 \mathrm{~m} / \mathrm{s}$

Displacement $=40 \times 3600-10000=134000 \mathrm{~m}$ Distant $=40 \times 3600+10000=154000 \mathrm{~m}$
Total time $=3600+50 \times 60+20 \times 60=7800 \mathrm{sec}$
Av. Velocity $=134000 / 7800=17.2 \mathrm{~m} / \mathrm{s}$
Av. Speed $=154000 / 7800=19.7 \mathrm{~m} / \mathrm{s}$

خلال رحلة الحافلة نجد أن هناك ثـلاث مراحل مبيـة في الثكل السابق: (I):المرحلة الأولى

$$
\begin{aligned}
v_{0}=0 & =0 ; a=+1.5 \mathrm{~m} / \mathrm{s}^{2} ; v_{f}=9 \mathrm{~m} / \mathrm{s} \\
& v_{f}=v 0+a t
\end{aligned} t_{f}=\left(v_{f}-v_{0}\right) / a=6 \mathrm{~s}
$$

خلال هـا الزمن تكون الحافلة قطعت مسافة
$x_{I}=\left(v_{2 f}-v_{20}\right) / 2 a=27 \mathrm{~m}$
(II):المرحلة الثالثة
$v_{0}=9 \mathrm{~m} / \mathrm{s} ; v_{f}=0 ; a=-2 \mathrm{~m} / \mathrm{s} 2$
$t_{I I I}=\left(v_{f}-v_{0}\right) / a=4.5 \mathrm{~s}$
خلال هذا الزمن تكون الحافلة قطعت مسافة
$x_{\text {III }}=\left(v_{2 f}-v_{20}\right) / 2 a=20.25 \mathrm{~m}$
وبناء علية تكون الحافلة قـ قطعت مسافة في المرحلة الثانية (II) $x_{I I}=400-\left(x_{I}+x_{I I}\right)=352.75 \mathrm{~m}$
و حيث أن a=0 فى المرحلة الثانية (II) فإن
$x_{I I}=V_{0} t_{I I} \longrightarrow t_{I I}=x_{I I} / v_{0}=39.2 \mathrm{~s}$
الزمن الكلي للرحلة
$T=t_{I}+t_{I I}+t_{I I I}=50 \mathrm{~s}$

1.9 Free Fall (Acceleration of Gravity)

$>$ Free fall is a motion under the influence of gravitational pull (gravity) only; Which direction is a freely falling object moving?
\rightarrow Gravitational acceleration is inversely proportional to the distance between the object and the center of the earth
$>$ The gravitational acceleration is $\mathrm{g}=9.80 \mathrm{~m} / \mathrm{s}^{2}$ on the surface of the earth, most of the time.
$>$ The direction of gravitational acceleration is ALWAYS toward the center of the earth, which we normally call $(-y)$; where up and down direction are indicated as the variable " y "
$>$ Thus the correct denotation of gravitational acceleration on the surface of the earth is $\mathrm{g}=-9.80 \mathrm{~m} / \mathrm{s}^{2}$

Free falling Objects

In the absence of air resistance, all objects fall towards the earth with the same constant acceleration $\left(a=-g=-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$, due to gravity
$\overrightarrow{\boldsymbol{a}}=\overrightarrow{\boldsymbol{g}} \quad$; free falling acceleration gravitational acceleration $g=9.80 \mathrm{~m} / \mathrm{s}^{2}$

Free fall motions: Summary

$$
\begin{aligned}
& v=v_{o}-g t \\
& y-y_{o}=v_{o} t-\frac{1}{2} g t^{2} \\
& y-y_{o}=\frac{1}{2}\left(v+v_{o}\right) t \\
& v^{2}=v_{o}^{2}-2 g\left(y-y_{o}\right)
\end{aligned}
$$

A ball is thrown up from the top of a building 40 m high with initial velocity of $10.0 \mathrm{~m} / \mathrm{s}$, determine:
(a) The time at which the ball reaches its maximum height.
(b) The maximum height.
(c) The time at which the ball returns to the position from which it was thrown.
(d) The velocity of the ball at this instant.
(e) The time at which the ball reach the ground.
(f) The velocity of the ball when its reach the ground.
(g) If the ball thrown downward with the same velocity ($10 \mathrm{~m} / \mathrm{s}$), what the velocity of the ball when its reach the ground?

$4.9 t^{2}-10 t-40=0$

$\mathrm{t}=4.05 \mathrm{~s}$
(f) The velocity of the ball when its reach the ground.

$$
\begin{aligned}
v & =v_{o}-g t \\
& =+10-(9.8)(4.05)=-29.69 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Try using $v^{2}=v_{o}^{2}-2 g y$
(g) left for you to try.

A box falls from an elevator that is ascending with a velocity of $2 \mathrm{~m} / \mathrm{s}$. It strikes the ground in 3 sec .
(a) How long will it take the box to reach its maximum height?
(b) How far from the ground was the box when it fell off the elevator?
(c) What is the height of the elevator when the box is at its highest point?

When the box falls from the elevator, its initial velocity will be $v_{0}=2 \mathrm{~m} / \mathrm{s}$ and $a=-g$.
(a) At maximum height, the box velocity is $v=0$
$v=v_{0}-g t$
$0=v_{0}-g t$
$\therefore t=v_{0} / g=0.204 \mathrm{~s}$
(b) $t=3 \mathrm{sec} ; v_{0}=2 \mathrm{~m} / \mathrm{s}$
$y=v_{0} t-\frac{l}{2} g t^{2}$
$\therefore y=(2)(3)-\frac{1}{2}(9.8)(3)^{2}=-38.1 \mathrm{~m}$
(c) The box will reach the maximum height in $\mathrm{t}=0.204 \mathrm{sec}$. During this time, the
elevator will move up with constant velocity ($v=2 \mathbf{~ m} / \mathrm{s})$ and acceleration $\mathrm{a}=0$.

$$
\begin{aligned}
& y=v_{0} t+\frac{1}{2} a t^{2} \\
& \therefore y=(2)(0.204)-0=0.408 m
\end{aligned}
$$

Therefore the height of the elevator, from the ground, when the box at its
highest point $=38.1+0.408=38.51 \mathrm{~m}$

Previogs Exame Gerestions

A sandbag that is dropped from a balloon strikes the ground after 20 s . If the balloon is moving vertically upward with a velocity of $20 \mathrm{~m} / \mathrm{s}$ then the height of the balloon when the sandbag is dropped is:
(a) 2360 m
(b) 1960 m
(c) 400 m
(d) 1560 m

A man ascending at $7 \mathrm{~m} / \mathrm{s}$ in a balloon 20 m above the ground accidentally drops a box. The velocity of the box just before touching the ground is:

(a) $14 \mathrm{~m} / \mathrm{s}$
(b) $18 \mathrm{~m} / \mathrm{s}$
(c) $21 \mathrm{~m} / \mathrm{s}$
(d) $58 \mathrm{~m} / \mathrm{s}$
A ball is thr
takes the ball
(a) 5.235 s
(b) 1.345 s
(c) 0.652 s
(d) 0.052 s

To get At : Study and Solve Problems As MUCH As you CAN

