

Measuring forces

- Forces are often measured by determining the elongation of a calibrated spring.
- Forces are vectors!! Remember vector addition.
- To calculate net force on an object you must use vector addition.

3.1 Newton's First Law of Motion:

An object continues in a state of rest or in a state of uniform motion at a constant speed along a straight line unless compelled to change that state by a net force.

In other words;
If the net force $\sum \mathrm{F}$ exerted on an object is zero the object continues in its original state of motion. That is, if $\sum \mathrm{F}=0$, an object at rest remains at rest and an object moving with some velocity continues with the same velocity.

Why? Because objects have "inertia"

3.2 MASS (INERTIA):

The "tendency" that Newton observed for objects at rest to stay at rest and objects in motion to stay in uniform motion in a straight line.

How do we measure inertia?

MASS
A measure of the resistance of an object to changes in its motion due to a force
Scalar

- SI units are kg

Balanced forces:
We say that the NET force is zero!

Acceleration:

Remember that the word "acceleration" denotes an increase in velocity OR a decrease in velocity OR a change in the direction of velocity.

A force is any influence that change the velocity of an object

Newton's $2^{\text {nd }}$ Law of Motion

The acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass.

$$
\begin{aligned}
& \sum \vec{F}=\boldsymbol{m} \cdot \vec{a} \\
& F_{x}=m \cdot a_{x} \quad F_{y}=m \cdot a_{y} \quad F_{z}=m \cdot a_{z}
\end{aligned}
$$

$F=\mathbf{m \times a}$ Units of Force					
$\left.=[\mathbf{k g}] \times \mathrm{m} / \mathbf{s}^{\mathbf{2}}\right]$					
Standard Unit: Newton					
One Newton: The force required to accelerate a 1 kg mass by $1 \mathrm{~m} / \mathrm{s}^{2}$					
3.6 British Units of Mass and Force					
TTable 3.1 Units of mass and weight					
Sspen	${ }^{\text {Unit }}$	Unit	matas		
unis	dol	weight			given mass m
st	Kioleram	Nemon	9.80 ms		$w(\mathbb{N})=m\left(k_{8}\right) \times 9.80 \mathrm{~ms} \mathrm{~s}^{2}$
Brish	${ }_{\substack{\text { cus } \\ \text { Sug }}}^{\text {ces }}$				$w(\mathrm{~b})=m\left(\right.$ sugs) $\times 32.2 \mathrm{fts} \mathrm{s}^{2}$
Dr. Abdalan M.Azzeer					

55and

A $60-\mathrm{g}$ tennis ball approaches a racket at $30 \mathrm{~m} / \mathrm{s}$, is in contact with the racket's strings for $5.0 \mathrm{~ms}\left(1 \mathrm{~ms}=1\right.$ millisecond $=10^{-3} \mathrm{~s}$), and then rebounds at $30 \mathrm{~m} / \mathrm{s}$ (Fig. 3.11). What was the average force the racket exerted on the ball?

SOLUTION The tennis ball experienced a change in velocity of

$$
\Delta v=v_{f}-v_{0}=(-30 \mathrm{~m} / \mathrm{s})-(30 \mathrm{~m} / \mathrm{s})=-60 \mathrm{~m} / \mathrm{s}
$$

so its acceleration was

$$
a=\frac{\Delta v}{\Delta t}=\frac{-60 \mathrm{~m} / \mathrm{s}}{5.0 \times 10^{-3} \mathrm{~s}}=-1.2 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}
$$

The corresponding force is, since $60 \mathrm{~g}=0.060 \mathrm{~kg}$,

$$
F=m a=(0.060 \mathrm{~kg})\left(-1.2 \times 10^{4} \mathrm{~m} / \mathrm{s}^{2}\right)=-720 \mathrm{~N}=-0.72 \mathrm{kN}
$$

EXAMPLE
 3.2

During performances of the Bouglione Circus in 1976, John Tailor was fired from a compressed-air cannon whose barrel was 20 m long. Tailor emerged from the cannon (twice daily, three times on Saturdays and Sundays) at $40 \mathrm{~m} / \mathrm{s}$. If Tailor's mass was 70 kg . find the average force on him during the firing of the cannon (Fig. 3.12).

SOLUTION We start by finding Tailor's acceleration with the help of Eq. (1.12),

$$
v_{f}^{2}=v_{0}^{2}+2 a x
$$

Here $\mathrm{v}_{0}=0, \mathrm{v}_{f}=40 \mathrm{~m} / \mathrm{s}$, and $x=20 \mathrm{~m}$, so
$v_{f}^{2}=0+2 a x$
$a=\frac{v_{f}^{2}}{2 x}=\frac{(40 \mathrm{~m} / \mathrm{s})^{2}}{(2)(20 \mathrm{~m})}=40 \mathrm{~m} / \mathrm{s}^{2}$
The corresponding average force is

$$
F=m a=(70 \mathrm{~kg})\left(40 \mathrm{~m} / \mathrm{s}^{2}\right)=2800 \mathrm{~N}=2.8 \mathrm{kN}
$$

Example 5.1

Determine the magnitude and direction of acceleration of the puck whose mass is 0.30 kg and is being pulled by two forces, \mathbf{F}_{1} and \mathbf{F}_{2}, as shown in the picture, whose magnitudes of the forces are 8.0 N and 5.0 N , respectively.

Magnitude and direction of acceleration a

$$
a_{x}=\frac{F_{x}}{m}=\frac{8.7}{0.3}=29 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
a_{y}=\frac{F_{y}}{m}=\frac{5.2}{0.3}=17 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
|\vec{a}|=\sqrt{(29)^{2}+(17)^{2}}=34 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
\theta=\tan ^{-1}\left(\frac{a_{y}}{a_{x}}\right)=\tan ^{-1}\left(\frac{17}{29}\right)=30^{\circ}
$$

3.5 The force of gravity and weight

Combining Law of gravity with Newton's $2^{\text {nd }}$ Law of motion, we can derive an expression for the acceleration due to gravity.

Objects are attracted to the Earth.
$>$ This attractive force is the force of gravity F_{g}.

$$
\vec{F}_{g}=\boldsymbol{m} \cdot \overrightarrow{\boldsymbol{g}}
$$

$>$ The magnitude of this force is called the weight of the object.
The weight of an object is, thus mg.
The weight of an object can very with location (less weight on the moon than on earth, since g is smaller).

The mass of an object does not vary.

5.6 Newton's $3^{\text {rd }}$ Law of Motion

Whenever one body exerts a force on a second body, the second body exerts an oppositely directed force of equal magnitude on the first body.

> "For every action there is an equal and opposite reaction."

If two objects interact, the force F_{12} exerted by object 1 on object 2 is equal in magnitude and opposite in direction to the force F_{21} exerted by object 2 on object 1:

$$
\vec{F}_{12}=-\vec{F}_{21}
$$

Action and reaction forces always act on different objects.

Where is the action and reaction force?

Action-Reaction Pairs: Act On Different Bodies
$>$ Forces exerted $\underline{B Y}$ a body $\underline{D O}$ NOT (directly) influence its motion!!
\rightarrow Forces exerted $\underline{O N}$ a body ($B Y$ some other body) $\underline{D O \text { influence its motion!! }}$
$>$ When discussing forces, use the words "BY" and "ON" carefully.

The Normal Force:

The normal force, F_{N}, is one component of the force that a surface exerts on an object with which it is in contact, namely, the component perpendicular to the surface.

The Normal Force: How to Measure

The magnitude of the normal force is a measure of how hard two objects push against each other.

The direction is perpendicular to the surface.

$>$ Where does the normal force come from?
$>$ From the other body!!!!
$>$ Does the normal force $A L W A Y S$ equal the weight?

Some comments on strings/cords/cables/ropes

Can be used to pull from a distance.
$>$ Tension (T) at a certain position in a string is the magnitude of the force acting across a cross-section of the string at that position.

- The force you would feel if you cut the string and grabbed the ends.
- An action-reaction pair.

More on cords/strings/ropes/cables.

- Consider a horizontal segment of string having mass m :
- Draw a free-body diagram (ignore gravity as string is almost massless

- Using Newton's 2nd law (in x direction):

$$
F_{N E T}=T_{2}-T_{1}=m a
$$

- So if $m=0$ (i.e. the string is light) then $T_{1}=\square \square T_{2}$

