Some Basic Information

When Newton's laws are applied, external forces are only of interest!!

Why?
Because, as described in Newton's first law, an object will keep its current motion unless non-zero net external force is applied.

Normal Force, n:

Tension, \mathbf{T} :

Free-body diagram

Reaction force that reacts to gravitational force due to the surface structure of an object. Its direction is perpendicular to the surface.

The reactionary force by a stringy object against an external force exerted on it.

A graphical tool which is a diagram of external forces on an object and is extremely useful analyzing forces and motion!! Drawn only on an object.

Free Body Diagrams

> Diagrams of vector forces acting on an object

- A great tool to solve a problem using forces or using dynamics
- Select a point on an object and w/ information given
> Identify all the forces acting only on the selected object
> Define a reference frame with positive and negative axes specified

D Draw arrows to represent the force vectors on the selected point
> Write down net force vector equation
> Write down the forces in components to solve the problems
> No matter which one we choose to draw the diagram on, the results should be the same, as long as they are from the same motion

SOME APPLICATIONS OF NEWTON'S LAWS

Example 5.4

A traffic light weighing 125 N hangs from a cable tied to two other cables fastened to a support as shown in the figure. Find the tension in the three cables.

x-comp. of net force

$$
\sum F_{x}=0 \Rightarrow-T_{1} \cos \left(37^{\circ}\right)+T_{2} \cos \left(53^{\circ}\right)=0 \quad \therefore T_{1}=\frac{\cos \left(53^{\circ}\right)}{\cos \left(37^{\circ}\right)} T_{2}=0.754 T_{2}
$$

y-comp. of net force

$$
\begin{aligned}
\sum F_{y}=0 \Rightarrow & T_{1} \sin \left(37^{\circ}\right)+T_{2} \sin \left(53^{\circ}\right)-m g=0 \\
& T_{2}\left[\sin \left(53^{\circ}\right)+0.754 \times \sin \left(37^{\circ}\right)\right]=1.25 T_{2}=125 \mathrm{~N} \\
& T_{2}=100 \mathrm{~N} ; \quad T_{1}=0.754 T_{2}=75.4 \mathrm{~N}
\end{aligned}
$$

- Start with $\boldsymbol{F}=m \boldsymbol{a}$.

Plug in $F=50 \mathrm{~N}, d=10 \mathrm{~m}, m=100 \mathrm{~kg}$:

- Draw a Free Body Diagram

Use Newton's 2nd law in the upward direction:
$\Sigma F=m a$
$\boldsymbol{T}-\boldsymbol{m g}=\boldsymbol{m a}$
$T=m a+m g=m(g+a)$

EXAMPLE APPERENT WEIGHT

In the Figure shown, a passenger of mass $m=72.2 \mathrm{~kg}$ stands on a platform scale in an elevator cab. We are concerned with the scale readings when the cab is stationary, and when it is moving up or down. (a) Find a general solution for the scale reading, whatever the vertical motion of the cab.

SOLUTION:

$$
\begin{aligned}
& N-m g=m a \\
& N=m(g+a)
\end{aligned}
$$

(b) What does the scale read if the cab is stationary or moving upward at a constant $0.50 \mathrm{~m} / \mathrm{s}$?

$$
N=(72.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+0\right)=708 \mathrm{~N}
$$

(c) What does the scale read if the cab accelerates upward at $3.20 \mathrm{~m} / \mathrm{s}^{2}$ and downward at $3.20 \mathrm{~m} / \mathrm{s}^{2}$?

$$
\begin{aligned}
& N=(72.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+3.20 \mathrm{~m} / \mathrm{s}^{2}\right)=939 \mathrm{~N} \\
& N=(72.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}-3.20 \mathrm{~m} / \mathrm{s}^{2}\right)=477 \mathrm{~N}
\end{aligned}
$$

(d) During the upward acceleration in part (c), what is the magnitude $F_{\text {net }}$ of the net force on the passenger, and what is the magnitude $a_{p, c a b}$ of the passenger's acceleration as measured in the frame of the cab?

$$
\begin{aligned}
& \vec{F}_{\text {net }}=m \vec{a}_{p, c a b} ? \\
& \\
& \\
& \quad F_{\text {net }}=N-F_{g}=939 \mathrm{~N}-708 \mathrm{~N}=231 \mathrm{~N}
\end{aligned}
$$

The acceleration $a_{p, c a b}$ of the passenger relative to the frame of the cab is zero. Thus, in the noninertial frame of the accelerating cab, $F_{\text {net }}$ is not equal to $\mathrm{ma}_{\mathrm{p}, \mathrm{cab}}$, and Newton's second law does not hold

ELEVATOR

APPERENT WEIGHT

Consider x and y components separately:

- x: $m g \sin \theta=m a . \quad a=g \sin \theta$
y: $N-m g \cos \theta=0 . \quad N=m g \cos \theta$

Atwood's Machine:

Masses m_{1} and m_{2} are attached to an ideal massless string and hung as shown around an ideal massless pulley.
Find the accelerations, of the masses.
What is the tension in the string T ?

Assume $m_{1}>m_{2}$: the direction of Motion is shown

- Draw free body diagrams for each object
- Define the acceleration direction
- Applying Newton's Second Law:

Form
$m_{1} g-T_{1}=m_{1} a$
For m_{2}
$T_{2}-m_{2} g=m_{2} a$
\square But $T_{1}=T_{2}=T$
since pulley is ideal

$$
\begin{align*}
& m_{1} g-T=m_{1} a \\
& T-m_{2} g=m_{2} a \tag{b}
\end{align*}
$$

- Two equations \& two unknowns

- we can solve for both unknowns (T and a).
- add $(b)+(a):$
$\left(m_{1}-m_{2}\right) g=\left(m_{1}+m_{2}\right) a$

$$
a=\frac{\left(m_{1}-m_{2}\right)}{\left(m_{1}+m_{2}\right)} g
$$

- Substitute the value of a in eq. (b), we obtained;

$$
T=2 m_{1} m_{2} /\left(m_{1}+m_{2}\right) g
$$

Is the result reasonable? Check limiting cases!
Special cases:
i.) $m_{l}=m 2=m \quad \Rightarrow \quad a=0$ and $T=m g$. OK!
ii.) m_{2} or $m_{l}=0 \quad \Rightarrow \quad|a|=g$ and $T=0$. OK!

- Atwood's machine can be used to determine g (by measuring the acceleration a for given masses).

Example;

A 5 kg block is placed on a frictionless inclined plane of angle 30° and pushed up the plane with a horizontal force of magnitude 30 N .

Draw a free body diagram for the mass:

What are all of the forces acting?

- Using components
$x: \boldsymbol{F}_{\boldsymbol{X}}=\boldsymbol{T}_{\boldsymbol{X}}=\boldsymbol{T} \sin \theta=m a$
$y: F_{Y}=T_{Y}-m g$

Accelerometer

- Let's put in some numbers:
- Say the car goes from 0 to $\mathbf{6 0} \mathbf{~ m p h}$ in $\mathbf{1 0}$ seconds:
$-60 \mathrm{mph}=60 \times 0.45 \mathrm{~m} / \mathrm{s}=27 \mathrm{~m} / \mathrm{s}$.
- Acceleration $a=\Delta v / \Delta t=2.7 \mathrm{~m} / \mathrm{s}^{2}$.
- So $\quad a / g=2.7 / 9.8=0.28$.

READ EXAMPLES 5.5 to 5.10
Dr. Abrallah M.Azkeer

More questions

The body that is suspended by a rope in the figure has a weight of 75 N .
Is T equal to, greater than or less than 75 N when the body is moving downward at...
(a) increasing speed

1. less than
2. equal to
3. greater than
(b) decreasing speed
4. less than
5. greater than
6. equal to

The figure shows a train of four block being pulled across a frictionless floor by force \boldsymbol{F}. What total mass is accelerated to the right by...
(a) Force F
1.20
2.2
3. 7
4.10
(b) cord 3

1. 8
2.20
2. 3
3. 18

The figure shows a group of three blocks being pushed across a frictionless floor by a horizontal force \boldsymbol{F}. What total mass is accelerated to the right ..
(a) by force F

1. 17
2. 5
3. 12
4. 7

(b) by force F_{21} on block 2 from block 1
5. 5
6. 2
7. 7
8. 12
(c) by force F_{32} on block 3 from block 2
9. 17
10. 12
11. 2
12. 10
(d) Rank the blocks according to the magnitude of their accelerations, greatest first.
13. $3,2,1$
14. $1,2,3$
15. all tie
16. $2,1,3$
(e) Rank forces F, F_{21} and F_{32} according to their magnitude, greatest first.
17. all tie
18. $\mathrm{F}_{32}, \mathrm{~F}_{21}, \mathrm{~F}$
19. $\mathrm{F}_{21}, \mathrm{~F}, \mathrm{~F}_{32}$
20. $\mathrm{F}, \mathrm{F}_{21}, \mathrm{~F}_{32}$
