

Kinetic energy: Energy associated with motion
Potential energy: Energy associated with position

Potential energy U:

$>$ Can be thought of as stored energy that can either do work or be converted to kinetic energy.
$>$ When work gets done on an object, its potential and/or kinetic energy increases.
\Rightarrow There are different types of potential energy:

* Gravitational energy
* Elastic potential energy (energy in an stretched spring)
* Others (magnetic, electric, chemical, ...)

Gravitational Potential Energy

Potential Energy $(\mathbf{P E}) \equiv$ Energy associated with position or configuration of a mass.

Consider a problem in which the height of a mass above the Earth changes from y_{1} to y_{2} :
$\mathbf{W}_{\text {grav }}=$?
$\mathrm{UP} \Rightarrow \mathrm{W}_{\mathrm{g}}=-\mathrm{mg} \mathrm{s}=-\mathrm{mg}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)$
Down $\Rightarrow \mathrm{W}_{\mathrm{g}}=+\mathrm{mg} \mathrm{s}$

$$
\mathbf{W}_{g}=-m g\left(y_{2}-y_{1}\right)
$$

105 PHYS

$$
\begin{aligned}
& \text { mgy } \equiv U_{g} \equiv \text { gravitational potential energy }(P E) \\
& \Rightarrow U_{2}-U_{1}=\Delta U \\
& \Rightarrow W_{g}=-m g\left(y_{2}-y_{1}\right)=U_{1}-U_{2}=-\Delta U_{g} \\
& \\
& \\
& W_{g}=-\Delta U_{g}
\end{aligned}
$$

Changing the configuration of an interacting system requires work
example: lifting a book

The change in potential energy is equal to the negative of the work done

$$
\Delta U_{g}=-W
$$

But Work/Kinetic Energy Theorem says: $W=\Delta K$

$$
\begin{gathered}
W=-\Delta U=\Delta K \\
\Delta K+\Delta U=0
\end{gathered}
$$

Total Mechanical Energy

The change in potential energy is equal to the negative of the work done

$\Delta U=-W$

But Work/Kinetic Energy Theorem says: $W=\Delta K$
$W=-\Delta U=\Delta K, ~ \longrightarrow \Delta K+\Delta U=0$
$\Delta K+\Delta U=0$
$K_{2}-K_{1}+U_{2}-U_{1}=0$
$K_{2}+U_{2}=K_{1}+U_{1}=$ constant $=E \equiv$ Total mechanical energy
NOTE that the ONLY forces is gravitational energy which doing the work
The sum of K and U for any state of the system = the sum of K and U for any other state of the system

In an isolated system acted upon only by conservative forces
Mechanical Energy is conserved

105 PHYS
Dr. Abrallah M.Azkeer

Conservative Forces

(a) A force is conservative if work done by that force acting on a particle moving between points is independent of the path the particle takes between the two points

(b) The total work done by a conservative force is zero when the particle moves around any closed path and returns to its initial position

Non-conservative forces:
A force is non-conservative if it causes a change in mechanical energy; mechanical energy is the sum of kinetic and potential energy.
Example: Frictional force.
*This energy cannot be converted back into other forms of energy (irreversible).
Work does depend on path.
For straight line $W=-\boldsymbol{f} \boldsymbol{d}$
For semi-circle path $W=-f(\pi d / 2)$

Work varies depending on the path. Energy is dissipated

The presence of a non-conservative force reduces the ability of a system to do work (dissipative force)

Energy dissipation: e.g. sliding friction

As the parts scrape by each other they start small-scale vibrations, which transfer energy into atomic motion

The atoms' vibrations go back and forththey have energy, but no average momentum. The increased atomic vibrations appear to us as a rise in the temperature of the parts. The temperature of an object is related to the thermal energy it has. Friction transfers some energy into thermal energy

Example 8.3

Nose crusher?
A bowling ball of mass m is suspended from the ceiling by a cord of length L. The ball is released from rest when the cord makes an angle θ_{A} with the vertical.
(a) Find the speed of the ball at the lowest point B.

(b) What is the tension T_{B} in the cord at point B ?
(c) The ball swings back. Will it crush the operator's nose?

Example

(a) An actor uses some clever staging; to make his entrance.
$M_{\text {actor }}=65 \mathrm{~kg}, M_{\text {bag }}=130 \mathrm{~kg}, \mathrm{R}=3 \mathrm{~m}$
What is the max. value of θ can have before sandbag lifts of the floor?
(b) Free-body diagram for actor at the bottom of the circular path. (c) Free-body diagram for sandbag.
$\boldsymbol{K}_{f}+\boldsymbol{U}_{f}=\boldsymbol{K}_{i}+\boldsymbol{U}_{i}$
$\frac{1}{\mathbf{2}} M_{\text {actor }} v_{f}^{2}+0=0+M_{\text {actor }} g y_{i}$
$y_{i}=R-R \cos \theta=R(1-\cos \theta)$

$$
v_{f}^{2}=2 g R(1-\cos \theta)
$$

How we can obtain v ????
$\sum F_{y}=T-M_{a c t o r} g=M_{\text {actor }} \frac{v_{f}^{2}}{R}$
$\Rightarrow T=M_{a c t o r} g+M_{\text {actor }} \frac{v_{f}^{2}}{R}$
For the sandbag not to move $\Rightarrow a=0 \Rightarrow T=M_{\text {bag }}$ g

$$
\theta=60^{\circ}
$$

Example

$m=3 \mathrm{~kg}, d=1 \mathrm{~m}, \theta=30^{\circ}$,
$v_{i}=0, f_{k}=5 \mathrm{~N}, h=0.5 \mathrm{~m}$, $v_{f}=$?
$\Delta K+\Delta U=W_{n c}$

$\boldsymbol{K}_{f}-\boldsymbol{K}_{i}+\boldsymbol{U}_{f}-\boldsymbol{U}_{\boldsymbol{i}}=\boldsymbol{W}_{f_{k}}$
$\frac{1}{2} m v_{f}^{2}-0+0-m g h=-f_{k} d$
$v_{f}=\sqrt{\frac{2}{m}\left(m g h-f_{k} d\right)}=2.54 m / s$
What happen when you don't know h ?

Example 8.6

A child of mass m rides on an irregularly curved slide of height $h=2.00 \mathrm{~m}$, as shown in Figure 8.12. The child starts from rest at the top.
(A) Determine his speed at the bottom, assuming no friction is present.
(B) If a force of kinetic friction acts on the child, how much mechanical energy does the system lose? Assume that $v_{f}=3.00 \mathrm{~m} / \mathrm{s}$ and $m=20.0 \mathrm{~kg}$.

$$
\begin{aligned}
& \Delta E=0=\Delta K+\Delta U \\
& m g h=\frac{1}{2} m v^{2} \\
& v=\sqrt{2 g h} \\
& v=\sqrt{2 \times 9.8 \times 20.0}=19.8 \mathrm{~m} / \mathrm{s} \\
& \Delta K=K_{f}-K_{i}=-f_{k} d \\
& \text { Since } K_{f}=0 \quad-K_{i}=-f_{k} d ; f_{k} d=K_{i} \\
& f_{k}=\mu_{k} \boldsymbol{n}=\mu_{k} \boldsymbol{m} g \\
& d=\frac{K_{i}}{\mu_{k} m g}=\frac{\frac{1}{2} m v^{2}}{\mu_{k} m g}=\frac{v^{2}}{2 \mu_{k} g}=\frac{(19.8)^{2}}{2 \times 0.210 \times 9.80}=95.2 \mathrm{~m}
\end{aligned}
$$

MINI REVIEW: WORK-KEH-PE

Work done by constant force: $\quad W=\mathbf{F} \cdot \mathbf{d}=F d \cos \theta$ e.g. Work done by gravity: $\quad W_{g}=-m g \Delta y$

Change in gravitational PE: $\Delta \tilde{U}_{g}=-W_{g}=m g \Delta y$

Work - Energy Thm: $\sum W_{\text {non-con }}=\Delta E_{\text {mech }}=\Delta K+\Delta U$

$>K+U$ energy is conserved, so $\Delta E=0$

$$
\Delta K=-\Delta U
$$

$>$ Moving down a distance d,

$$
\Delta U=-m g d, \quad \Delta K=\frac{1}{2} m v_{1}^{2}
$$

Solving for the speed:

$$
v_{1}=\sqrt{2 g d}
$$

$>$ At the end, we are a distance d - h below our starting point.
$\Delta U=-m g(d-h), \Delta K=\frac{1}{2} m v_{2}^{2}$
Solving for the speed:

$$
v_{2}=\sqrt{2 g(d-h)}
$$

Example:

With what speed does the weight have just before contact with the nail?

$$
\begin{gathered}
\Delta K+\Delta U=0 \\
U_{i}=m g h \\
U_{f}=0 \\
K_{i}=0 \\
K_{f}=\frac{1}{2} m v^{2}
\end{gathered}
$$

$$
v=\sqrt{2 g h}
$$

Using Energy to Find Resistive Forces
 Pendulum \& Sliding Block

What is the work done by friction?

$$
K E_{i}=K E_{f}=0
$$

$$
\begin{aligned}
\mathrm{U}_{\mathrm{i}} & =\mathrm{mgh} \\
& =\mathrm{mgL}(1-\cos \theta) \\
\mathrm{U}_{\mathrm{f}} & =0
\end{aligned}
$$

$\Delta \mathrm{KE}+\Delta \mathrm{U}=\mathrm{W}_{\mathrm{nc}}$
$\mathrm{W}_{\mathrm{nc}}=\Delta \mathrm{U}=\mathrm{mgL}(1-\cos \theta)=-\mathrm{fd}$

Example;

A block slides down a frictionless ramp. Suppose the horizontal (bottom) portion of the track is rough, such that the coefficient of kinetic friction between the block and the track is μ_{k}.
How far, x, does the block go along the bottom portion of the track before stopping?

Using $W_{n c}=\Delta \boldsymbol{K}+\Delta \boldsymbol{U}$
As before, $\Delta U=-m g d$
$\boldsymbol{W}_{\boldsymbol{m c}}=$ work done by friction $=-\mu_{\mathrm{k}} \boldsymbol{m g x}$.
$\Delta K=0$ since the block starts out and ends up at rest.

$$
\boldsymbol{W}_{\boldsymbol{n c}}=\Delta \boldsymbol{U} \quad \Rightarrow \quad-\mu_{\mathrm{k}} \boldsymbol{m} \boldsymbol{g} \boldsymbol{x}=-\boldsymbol{m} \boldsymbol{g} \boldsymbol{d} \quad \Rightarrow \quad \boldsymbol{x}=\boldsymbol{d} / \mu_{\mathrm{k}}
$$

Example

Two blocks, A and $B\left(\mathrm{~m}_{\mathrm{A}}=50 \mathrm{~kg}\right.$ and $\left.\mathrm{m}_{\mathrm{B}}=100 \mathrm{~kg}\right)$, are connected by a string as shown. If the blocks begin at rest, what will their speeds be after A has slid
a distance $d=0.25 \mathrm{~m}$? Assume the pulley and incline are frictionless.

ANS: $1.51 \mathrm{~m} / \mathrm{s}$

Example:

A skier ($\mathrm{m}=58 \mathrm{~kg}$) is traveling down a 25 degree slope. His skies against the snow exert a frictional force of 70 N . He starts out with a velocity of $3.6 \mathrm{~m} / \mathrm{s}$. What velocity does he end up with after traveling 57 m downhill?

What is the net force along the direction of the displacement?
$\sum F_{s}=m g \sin \theta+(-70 N)$

(a)

(b) Free-body diagram for the skier
$W=\sum F_{s} \times s=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}$
$[m g \sin \theta+(-70 N)] \times s=\frac{1}{2} m v^{2}-\frac{1}{2} m v_{0}^{2}$
From this, we can solve for v!

Energy Loss in Automobile
Automobile uses only at 13% of its fuel to propel the veficle.

Why?

67% in the engine:	16% in friction in mechanical parts
1.	Incomplete burning
2. Heat	4% in operating other crucial parts
3.	Sound

13% used for balancing energy loss related to moving vehicle, like air resistance and road friction to tire, etc

Two frictional forces involved in moving vehicles $m_{\text {car }}=1450 \mathrm{~kg}$ Weight $=m g=14200 \mathrm{~N}$
Coefficient of Rolling Friction; $\mu=0.016 \quad \mu n=\mu m g=227 \mathrm{~N}$
Air Drag $f_{a}=\frac{1}{2} D \rho A v^{2}=\frac{1}{2} \times 0.5 \times 1.293 \times 2 v^{2}=0.647 v^{2} \quad$ Total Resistance $f_{t}=f_{r}+f_{a}$
Total power to keep speed $\mathrm{v}=26.8 \mathrm{~m} / \mathrm{s}=60 \mathrm{mi} / \mathrm{h} \quad P=f_{t} v=(691 \mathrm{~N}) \cdot 26.8=18.5 \mathrm{~kW}$
Power to overcome each component of resistance $\quad P_{r}=f_{r} v=(227) \cdot 26.8=6.08 \mathrm{~kW}$
$P_{a}=f_{a} v=(464.7) \cdot 26.8=12.5 \mathrm{~kW}$

