Final exam106
Time: 180 mn

Question 1(2+4)

a) If $F(x)=\int_{4 x^{2}}^{x^{4}} \frac{d t}{\sqrt{t+9}}$ find $F^{\prime}(2)$.
b) Use Simpson's rule, with $n=4$, to approximate $\int_{1}^{2} \frac{1}{x} d x$ and estimate the error

Question 2(2+3+3)

a) Evaluate the integral $\int(x+1) 3^{-x^{2}-2 x} d x$
b) Compute the integral $\int \frac{x^{2} d x}{\cosh ^{2} x^{3}}$
c) Find the indefinite integral $\int \frac{d x}{x \sqrt{x-1}}, x>1$

Question 3(3+3+2)

a) Use the substitution $u=\sqrt{x}$ to compute the integral $\int e^{\sqrt{x}} d x$
b) Evaluate the integral $\int(\sin x)^{1 / 2} \cos ^{5} x d x$
c) Evaluate the definite integral $\int_{0}^{\pi / 2} \sin (3 x) \cos (2 x) d x$

Question 4(3+4+2)

a) Sketch the region bounded by $y=2 x^{2}+1, y=4 x+1$

$$
x=0, x=3 \text {, and find its area. }
$$

b) i) Sketch the region R bounded by $y=\sqrt{x-1}, y=x-1$, and find the volume of the solid obtained by revolving R about the x -axis.
ii) Set up an integral for the volume of the solid obtained by revolving R about the line $x=3$
c) Evaluate the integral $\int \frac{2 x+1}{x(x+1)^{2}} d x$

Question5(3+3+3)

a) Find the arc length of the parametric curve given by: $x=\frac{t^{2}}{2}+1$

$$
y=\frac{t^{3}}{3}-1,0 \leq t \leq 1
$$

b) Find the area of the surface obtained by revolving the curve $y=2 x^{1 / 2}$, $x \in[1,2]$, about the x-axis.
c) Sketch the region R that lies in the first quadrant inside $r=2 \cos \theta$ and outside $r=2 \sin \theta$, and find its area.

