KING SAUD UNIVERSITY

Second Semester 36/37

Math Department

May 15 2016

Final exam106

Time: 180mn

Question 1(2+4)

a) If
$$F(x) = \int_{4x^2}^{x^4} \frac{dt}{\sqrt{t+9}}$$
 find $F'(2)$.

b) Use Simpson's rule, with n=4 , to approximate $\int_1^2 \frac{1}{x} \, dx$ and estimate the error

Question 2(2+3+3)

a) Evaluate the integral $\int (x+1)3^{-x^2-2x}dx$

b) Compute the integral $\int \frac{x^2 dx}{\cosh^2 x^3}$

c) Find the indefinite integral $\int \frac{dx}{x\sqrt{x-1}}$, x>1

Question 3(3+3+2)

a) Use the substitution $u=\sqrt{x}$ to compute the integral $\int e^{\sqrt{x}}\,dx$

b) Evaluate the integral $\int (\sin x)^{1/2} \cos^5 x dx$

c) Evaluate the definite integral $\int_0^{\pi/2} \sin(3x)\cos(2x)dx$

Question 4(3+4+2)

a) Sketch the region bounded by $y = 2x^2 + 1$, y = 4x + 1 x = 0, x = 3 and find its area.

- b) i) Sketch the region R bounded by $y=\sqrt{x-1}$, y=x-1, and find the volume of the solid obtained by revolving R about the x-axis.
 - ii) Set up an integral for the volume of the solid obtained by revolving R about the line x=3
- c) Evaluate the integral $\int \frac{2x+1}{x(x+1)^2} dx$

Question5(3+3+3)

- a) Find the arc length of the parametric curve given by: $x = \frac{t^2}{2} + 1$ $y = \frac{t^3}{3} 1$, $0 \le t \le 1$
- b) Find the area of the surface obtained by revolving the curve $y=2x^{1/2}$, $x\in[1,2]$, about the x-axis.
- c) Sketch the region R that lies in the first quadrant inside $r=2cos\theta$ and outside $r=2sin\theta$, and find its area.