King Saud University College of Sciences Department of Mathematics Second Semester (1434/1435) M-106 Second Midterm-Exam

Programmable Calculators are Not Authorized

The Exam paper contains 5 pages
(5 Multiple choice questions and 5 Full questions)

Name:	Number:
Name of Teacher:	Group No:

Max Marks: 25 Time: 90 minutes

Marks:

Multiple Choice (1-5)	
Question # 6	
Question # 7	
Question # 8	
Question # 9	
Question # 10	
Total	

Multiple Choice

Q.No:	1	2	3	4	5
$\{a,b,c,d\}$	a	a	a	d	b

Q. No: 1 The integral of $\int_{-1}^{0} \frac{1}{x^4} dx$, is equal to:

- $(a) \quad +\infty \quad (b) -\infty \qquad (c) \quad 0 \quad (d) \quad 1$

Q. No: 2 If we used the substitution $u = \tan(\frac{x}{2})$, then the integral $\int \frac{dx}{\sin(x)}$ is equal:

(a) $\ln |u| + c$ (b) $2 \tanh^{-1} u + c$ (c) $\tanh^{-1} u + c$ (d) $\ln |u + 1| + c$

Q. No: 3 The Integral $\int \ln(x^{\alpha})dx$, where α is a real number and x is positive, is equal

(a) $x\alpha(\ln(x) - 1) + c$ (b) $\alpha x \ln(x) - x + c$ (c) $\alpha x \ln(x) + \alpha x + c$ (d) $\alpha(x \ln(x) - 1) + c$

Q. No: 4 To evaluate the integral $\int \sin^2(x) \cos^3(x) dx$, the best substitution that can be used is:

(a) $u = \sec(x)$ (b) $u = \tan(x)$ (c) $u = \cos(x)$ (d) $u = \sin(x)$

Q. No: $5 \lim_{x \to \infty} \frac{\ln x}{\sqrt[3]{x}}$ is equal to:

- (a) 1 (b) 0 (c) 3 (d) ∞

Full Questions

Question No: 6. Evaluate
$$\int x^2 \sinh(x) dx$$

Let

$$u = x^2$$
 then $u' = 2x$, $v' = \sinh(x)$ then $v = \cosh(x)$ [1]

Then

$$\int x^2 \sinh(x) dx = x^2 \cosh(x) - 2 \int x \cosh(x) dx \ [0.5]$$

again let

$$u = x$$
 then $u' = 1$, $v' = \cosh(x)$ then $v = \sinh(x)$ [1]

we will have

$$\int x^2 \sinh(x) \, dx = x^2 \cosh(x) - 2(x \sinh(x) - \int \sinh(x) dx) [1]$$
$$= x^2 \cosh(x) - 2x \sinh(x) + 2 \cosh(x) + C [0.5]$$

Question No: 7 Evaluate
$$\int \frac{\sqrt{x^2-9}}{x} dx$$

Let

$$x = 3\sec(\theta) \text{ then } dx = 3\sec(\theta)\tan(\theta)d\theta, [0.5]$$

Consequently

$$\sqrt{x^2 - 9} = \sqrt{9\sec^2(\theta) - 9} = 3\sqrt{\sec^2(\theta) - 1} = 3\sqrt{\tan^2(\theta)} = 3\tan(\theta), [0.5]$$

and

$$\int \frac{\sqrt{x^2 - 9}}{x} dx = \int \frac{3\tan(\theta)}{3\sec(\theta)} 3\sec(\theta) \tan(\theta) d\theta$$

$$= 3 \int \tan^2(\theta) d\theta \ [0.5]$$

$$= 3 \int (\sec^2(\theta) - 1) d\theta \ [0.5]$$

$$= 3 \int \sec^2(\theta) d\theta - 3 \int d\theta = 3\tan(\theta) - 3\theta + C \ [0.5]$$

We have

$$\sec(\theta) = \frac{x}{3}$$
 then $\tan(\theta) = \frac{\sqrt{x^2 - 9}}{3}$ and $\theta = \sec^{-1}(\frac{x}{3})$ [0.5]

Then

$$\int \frac{\sqrt{x^2 - 9}}{x} dx = 3\tan(\theta) - 3\theta + C = 3\frac{\sqrt{x^2 - 9}}{3} - 3\sec^{-1}(\frac{x}{3}) + C \ [0.5]$$
$$= \sqrt{x^2 - 9} - 3\sec^{-1}(\frac{x}{3}) + C \ [0.5]$$

Question No: 8. Evaluate the integral $\int \frac{4x^2}{x^4 - 1} dx$ [4]

We have

$$\frac{4x^2}{x^4 - 1} = \frac{1}{x - 1} - \frac{1}{x + 1} + \frac{2}{x^2 + 1} [2]$$

Then

$$\int \frac{4x^2}{x^4 - 1} dx = \int \frac{1}{x - 1} dx - \int \frac{1}{x + 1} dx + \int \frac{2}{x^2 + 1} dx$$
$$= \ln|x - 1| - \ln|x + 1| + 2 \tan^{-1}(x) + C [2]$$

Question No: 9. Evaluate the integral $\int \frac{1}{\sqrt{3+2x-x^2}} dx$ [4]

$$\int \frac{1}{\sqrt{3+2x-x^2}} \, dx = \int \frac{1}{\sqrt{4-(x-1)^2}} \, dx \, [1]$$

we have

$$u = x - 1$$
 then $du = dx$ [1]

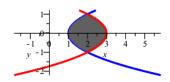
and then

$$\int \frac{1}{\sqrt{3+2x-x^2}} dx = \int \frac{1}{\sqrt{4-u^2}} du$$

$$= \sin^{-1}(\frac{u}{2}) + C [1]$$

$$= \sin^{-1}(\frac{x-1}{2}) + C [1]$$

.



Question No: 10. Sketch the region R bounded by $x = y^2 + 1$, $x = 3 - y^2$. And find the area of R.

Graph [1]

The area R bounded by $x = y^2 + 1$, $x = 3 - y^2$ is given by

$$R = \int_{-1}^{1} ((3 - y^2) - (y^2 + 1)) dy [2]$$
$$= \int_{-1}^{1} (2 - 2y^2) dy = \frac{8}{3} [1]$$