- Two Samples Test for Paired Observation

Q1.The following contains the calcium levels of eleven test subjects at zero hours and three hours after taking a multi-vitamin containing calcium.

Pair	0 hour $\left(X_{i}\right)$	3 hours $\left(Y_{i}\right)$	Difference $D_{i}=X_{i}-Y_{i}$
1	17.0	17.0	0.0
2	13.2	12.9	0.3
3	35.3	35.4	-0.1
4	13.6	13.2	0.4
5	32.7	32.5	0.2
6	18.4	18.1	0.3
7	22.5	22.5	0.0
8	26.8	26.7	0.1
9	15.1	15.0	0.1

The sample mean and sample standard deviation of the differences \mathbf{D} are 0.144 and 0.167 , respectively. To test whether the data provide sufficient evidence to indicate a difference in mean calcium levels ($H_{0}: \mu_{1}=\mu_{2}$ against $H_{1}: \mu_{1} \neq \mu_{2}$) with $\boldsymbol{\alpha}=0.10$ we have: $\bar{D}=0.144, S_{d}=0.167, n=9$
[1]. the reliability coefficient (the tabulated value) is:

$$
t_{1-\frac{\alpha}{2}, n-1}=t_{1-\frac{0.1}{2}, 9-1}=t_{0.95,8}=1.860
$$

[2]. the value of the test statistic is:

$$
\begin{gathered}
\begin{array}{l}
H_{0}: \mu_{1}=\mu_{2} \\
H_{1}: \mu_{1} \neq \mu_{2}
\end{array} \\
T=\frac{\bar{D}-\mu_{D}}{S_{d} / \sqrt{n}}=\frac{0.144-0}{0.167 / \sqrt{9}}=2.5868 \\
H_{1}: \mu_{1}-\mu_{2}=0 \\
\mu_{2} \neq 0
\end{gathered} \Rightarrow \begin{aligned}
& H_{0}: \mu_{D}=0 \\
& H_{1}: \mu_{D} \neq 0
\end{aligned}
$$

[3]. the decision is:

$$
T=2.5868 \notin A R:(-1.86,1.86) \text {, then we Reject } H_{0}
$$

Q2. Scientists and engineers frequently wish to compare two different techniques for measuring or determining the value of a variable. Reports the accompanying data on amount of milk ingested by each of 14 randomly selected infants.

Pair	DD method (X_{i})	TW method (Y_{i})	Difference $D_{i}=X_{i}-Y_{i}$
1	1509	1498	11
2	1418	1254	164
3	1561	1336	225
4	1556	1565	-9
5	2169	2000	169
6	1760	1318	442
7	1098	1410	-312
8	1198	1129	69
9	1479	1342	137
10	1281	1124	157
11	1414	1468	-54
12	1954	1604	350
13	2174	1722	452
14	2058	1518	540

1. The sample mean of the differences $\overline{\mathrm{D}}$ is:

$$
\bar{D}=\frac{11+164+225-9+169+442-312+\cdots+540}{14}=167.21
$$

$(A) 167.21$	(B) 0.71	(C) 0.61	(D) 0.31

2. The sample standard deviation of the differences S_{D} is:

$$
S_{D}=\sqrt{\frac{\left(D_{i}-\bar{D}\right)^{2}}{n-1}}=228.21
$$

$(A) 3.15$	(B) -0.71	(C) 71.53	(D) 228.21

3. The reliability coefficient to construct 90% confidence interval for the true average difference between intake values measured by the two methods μ_{D} is:

The reliability coefficient $=t_{1-\frac{\alpha}{2}, n-1}=t_{0.95,13}=1.771$

(A) 1.96	(B) 1.771	(C) 2.58	(D) 1.372

4. The $\mathbf{9 0 \%}$ lower limit for μ_{D} is:

$$
\begin{gathered}
=\bar{D}-\left(t_{1-\frac{\alpha}{2}, n-1} \times \frac{s_{D}}{\sqrt{n}}\right) \\
=167.21-\left(1.771 \quad \times \frac{228.12}{\sqrt{14}}\right)=59.19
\end{gathered}
$$

$(A) 24.92$	(B) 22.55	(C) 59.19	(D) 44.96

5. The $\mathbf{9 0 \%}$ upper limit for μ_{D} is:

$$
\begin{aligned}
& =\bar{D}+\left(t_{1-\frac{\alpha}{2}, n-1} \times \frac{s_{D}}{\sqrt{n}}\right) \\
= & 167.21+\left(1.771 \quad \times \frac{228.12}{\sqrt{14}}\right)=275.23
\end{aligned}
$$

$(A) 224.92$	(B) 322.55	(C) 275.23	(D) 24.96

To test $H_{0}: \mu_{D}=0$ versus $H_{A}: \mu_{D} \neq 0, \alpha=0.10$ as a level of significance we have:
6. The value of the test statistic is:

$$
T=\frac{\bar{D}-\mu_{D}}{s_{d} / \sqrt{n}}=\frac{167.21-0}{228.12 / \sqrt{14}}=2.74
$$

$(A) 2.74$	(B) -0.7135	$(C)-7.1530$	$(D)-0.3157$

7. The decision is:

$$
2.74 \notin A R:(-1.771,1.771)
$$

(A) Reject H_{0}
(B) Not reject H_{0}

Q3. In a study of a surgical procedure used to decrease the amount of food that person can eat. A sample of 10 persons measures their weights before and after one year of the surgery, we obtain the following data:

Before surgery (X)	148	154	107	119	102	137	122	140	140	117
After surgery (Y)	78	133	80	70	70	63	81	60	85	120
$D_{i}=X_{i}-Y_{i}$	70	21	27	49	32	74	41	80	55	-3

We assume that the data comes from normal distribution.
$>$ For 90% confidence interval for μ_{D}, where μ_{D} is the difference in the average weight before and after surgery.

1. The sample mean of the differences \bar{D} is:

$$
\bar{D}=\frac{70+21+27+\cdots 55-3}{10}=44.6
$$

2. The sample standard deviation of the differences S_{D} is:

$$
S_{D}=\sqrt{\frac{\left(D_{i}-\bar{D}\right)^{2}}{n-1}}=26.2
$$

3. The $\mathbf{9 0 \%}$ upper limit of the confidence interval for μ_{D} is:

$$
\begin{aligned}
& t_{1-\frac{\alpha}{2}, n-1}=t_{0.95,9}=1.833 \\
& =\bar{D} \quad+\left(t_{1-\frac{\alpha}{2}, n-1} \times \frac{S_{D}}{\sqrt{n}}\right) \\
& =44.6+\left(1.833 \quad \times \frac{26.2}{\sqrt{10}}\right)=59.38
\end{aligned}
$$

$>$ To test $H_{0}: \mu_{D} \geq 43$ versus $H_{A}: \mu_{D}<43$, with $\alpha=0.10$ as a level of significance, we have:
4. The value of the test statistic is:

$$
T=\frac{\bar{D}-\mu_{D}}{S_{d} / \sqrt{n}}=\frac{44.6-43}{26.2 / \sqrt{10}}=0.19
$$

5. The decision is:

$$
-t_{1-\alpha, n-1}=-t_{0.90,9}=-1.383 \Rightarrow 0.19 \notin R R:(-\infty,-1.383)
$$

(A) Reject H_{0}
(B) Do not reject H_{0}
(C) None of them

