• Two Samples Test for Paired Observation

Q1. The following contains the calcium levels of eleven test subjects at zero hours and three hours after taking a multi-vitamin containing calcium.

Pair	$0 \text{ hour } (X_i)$	3 hours (Y_i)	Difference $D_i = X_i - Y_i$
1	17.0	17.0	0.0
2	13.2	12.9	0.3
3	35.3	35.4	-0.1
4	13.6	13.2	0.4
5	32.7	32.5	0.2
6	18.4	18.1	0.3
7	22.5	22.5	0.0
8	26.8	26.7	0.1
9	15.1	15.0	0.1

The sample mean and sample standard deviation of the differences D are 0.144 and 0.167, respectively. To test whether the data provide sufficient evidence to indicate a difference in mean calcium levels $(H_0: \mu_1 = \mu_2 \text{ against} H_1: \mu_1 \neq \mu_2)$ with $\alpha = 0.10$ we have: $\overline{D} = 0.144$, $S_d = 0.167$, n = 9

[1]. the reliability coefficient (the tabulated value) is:

$$t_{1-\frac{\alpha}{2},n-1} = t_{1-\frac{0.1}{2},9-1} = t_{0.95,8} = \boxed{1.860}$$

[2]. the value of the test statistic is:

$$\begin{bmatrix}
H_0: \mu_1 = \mu_2 \\
H_1: \mu_1 \neq \mu_2
\end{bmatrix} \Rightarrow \begin{bmatrix}
H_0: \mu_1 - \mu_2 = 0 \\
H_1: \mu_1 - \mu_2 \neq 0
\end{bmatrix} \Rightarrow \begin{bmatrix}
H_0: \mu_D = 0 \\
H_1: \mu_D \neq 0
\end{bmatrix}$$

$$T = \frac{\overline{D} - \mu_D}{S_d / \sqrt{n}} = \frac{0.144 - 0}{0.167 / \sqrt{9}} = \boxed{2.5868}$$

[3]. the decision is:

$$T = 2.5868 \notin AR: (-1.86, 1.86), then we Reject H_0$$

Q2. Scientists and engineers frequently wish to compare two different techniques for measuring or determining the value of a variable. Reports the accompanying data on amount of milk ingested by each of 14 randomly selected infants.

Pair	DD method ($oldsymbol{X}_i$)	TW method (Y_i)	Difference $D_i = X_i - Y_i$
1	1509	1498	11
2	1418	1254	164
3	1561	1336	225
4	1556	1565	-9
5	2169	2000	169
6	1760	1318	442
7	1098	1410	-312
8	1198	1129	69
9	1479	1342	137
10	1281	1124	157
11	1414	1468	-54
12	1954	1604	350
13	2174	1722	452
14	2058	1518	540

1. The sample mean of the differences \overline{D} is:

$$\overline{D} = \frac{11+164+225-9+169+442-312+\cdots+540}{14} = 167.21$$

(A) 107.21 (B) 0.71 (C) 0.01 (D) 0.31	(A) 167.21	(B) 0.71	(C) 0.61	(D) 0.31
---	------------	----------	----------	----------

2. The sample standard deviation of the differences S_D is:

$$S_D = \sqrt{\frac{(D_i - \overline{D})^2}{n-1}} = 228.21$$

(A) 3.15	(B) -0.71	(C) 71.53	(D) 228.21
----------	-----------	-----------	------------

3. The reliability coefficient to construct 90% confidence interval for the true average difference between intake values measured by the two methods μ_D is:

The reliability coefficient =
$$t_{1-\frac{\alpha}{2},n-1} = t_{0.95,13} = 1.771$$

(A) 1.96	(B) 1.771	(C) 2.58	(D) 1.372
----------	-----------	----------	-----------

4. The 90% lower limit for μ_D is:

$$= \overline{D} - \left(t_{1 - \frac{\alpha}{2}, n - 1} \times \frac{S_D}{\sqrt{n}}\right)$$

$$= 167.21 - \left(1.771 \times \frac{228.12}{\sqrt{14}}\right) = 59.19$$

(A)24.92	(B) 22.55	(C) 59.19	(D) 44.96

5. The 90% upper limit for μ_D is:

$$= \overline{D} + \left(t_{1-\frac{\alpha}{2},n-1} \times \frac{S_D}{\sqrt{n}}\right)$$

=
$$167.21 + (1.771 \times \frac{228.12}{\sqrt{14}}) = 275.23$$

	(A)224.92	(B) 322.55	(C) 275.23	(D) 24.96
ı				

To test H_0 : $\mu_D = 0$ versus H_A : $\mu_D \neq 0$, $\alpha = 0.10$ as a level of significance we have:

6. The value of the test statistic is:

$$T = \frac{\overline{D} - \mu_D}{S_d / \sqrt{n}} = \frac{167.21 - 0}{228.12 / \sqrt{14}} = \boxed{2.74}$$

(A) 2.74	(B) -0.7135	(C) -7.1530	(D) -0.3157
----------	-------------	-------------	-------------

7. The decision is:

$$2.74 \notin AR: (-1.771, 1.771)$$

(A) Reject H_0

(B) Not reject H_0

Q3. In a study of a surgical procedure used to decrease the amount of food that person can eat. A sample of 10 persons measures their weights before and after one year of the surgery, we obtain the following data:

Before surgery (X)	148	154	107	119	102	137	122	140	140	117
After surgery (Y)	78	133	80	70	70	63	81	60	85	120
$D_i = X_i - Y_i$	70	21	27	49	32	74	41	80	55	-3

We assume that the data comes from normal distribution.

- For 90% confidence interval for μ_D , where μ_D is the difference in the average weight before and after surgery.
- 1. The sample mean of the differences \overline{D} is:

$$\overline{D} = \frac{70+21+27+\cdots55-3}{10} = 44.6$$

2. The sample standard deviation of the differences S_D is:

$$S_D = \sqrt{\frac{(D_i - \overline{D})^2}{n-1}} = 26.2$$

3. The 90% upper limit of the confidence interval for μ_D is:

$$t_{1-\frac{\alpha}{2},n-1} = t_{0.95,9} = 1.833$$

$$= \overline{D} + \left(t_{1-\frac{\alpha}{2},n-1} \times \frac{S_D}{\sqrt{n}}\right)$$

$$= 44.6 + \left(1.833 \times \frac{26.2}{\sqrt{10}}\right) = 59.38$$

- ➤ To test H_0 : $\mu_D \ge 43$ versus H_A : $\mu_D < 43$, with $\alpha = 0.10$ as a level of significance, we have:
- 4. The value of the test statistic is:

$$T = \frac{\overline{D} - \mu_D}{S_d / \sqrt{n}} = \frac{44.6 - 43}{26.2 / \sqrt{10}} = \boxed{0.19}$$

5. The decision is:

$$-t_{1-\alpha,n-1} = -t_{0.90,9} = -1.383 \implies \boxed{0.19 \notin RR: (-\infty, -1.383)}$$

(A) Reject H_0

(B) Do not reject
$$H_0$$

(C) None of them