# Osmolality in Serum and Urine

BCH472 [Practical]

### -Osmolality and Osmolarity:

- Osmolality is the concentration of a solution in terms of osmoles of solutes per kilogram of solvent.
   →expressed as (Osm/kg).
- Osmolarity is the concentration of a solution in terms of osmoles of solutes per liter of solution.
   → expressed as (Osm/L).

#### -Osmolality test:

- The osmolality test provides a snapshot of the number of solutes present in the blood (serum), urine, or stool.
- **Osmometer** is the device that measures the osmotic strength of a solution.



## -Serum osmolality:

- Serum osmolality is primarily ordered to investigate hyponatremia (low sodium in serum).
- Normal: Adults:  $280-303 \text{ mOsm/kg H}_2\text{O}$

|                                                         | Cause                                                                                                                                                                                     |
|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Higher than normal levels<br>( <b>hyperosmolality</b> ) | <ul> <li>Dehydration.</li> <li>Azotemia.</li> <li>Chronic renal disease .</li> <li>High sodium level (hypernatremia).</li> <li>Diabetes mellitus.</li> <li>Diabetes insipidus.</li> </ul> |
| Lower than normal levels<br>(hypoosmolality)            | <ul> <li>Loss of sodium with diuretics and low-salt diet (hyponatremia).</li> <li>Syndrome Inappropriate ADH secretion (SIADH).</li> <li>Excess hydration</li> </ul>                      |

## -Urine osmolality:

- Urine osmolality is frequently ordered along with serum osmolality.
- This test helps check your body's water balance and urine concentration.
- Osmolality is a more exact measurement of urine concentration than the urine specific gravity test.
- Normal: 24-hour: 300–900 mOsm/kg  $H_2O$ , Random: 50–1400 mOsm/kg  $H_2O$

|                                                         | Cause                                                                                                                                                               |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Higher than normal levels<br>( <b>hyperosmolality</b> ) | <ul> <li>Dehydration.</li> <li>Pre-renal azotemia.</li> <li>Glycosuria.</li> <li>Syndrome Inappropriate ADH secretion<br/>(SIADH).</li> <li>Hyponatremia</li> </ul> |
| Lower than normal levels (hypoosmolality)               | <ul> <li>Excessive fluid intake.</li> <li>Diabetes insipidus.</li> <li>Acute renal insufficiency.</li> <li>Hypernatremia.</li> </ul>                                |

#### -References :

- http://www.nlm.nih.gov/medlineplus/ency/article/003463.htm
- Agasti TK, Textbook of Anesthesia for Postgraduates, JP Medical Ltd .p. 238.
- Fischbach FT, Dunning MB. A Manual of Laboratory and Diagnostic Tests. Lippincott Williams & Wilkins, 2009.