# **Chapter 13**

Concrete Form Design

# Concrete Form Design

SLAB FORM DESIGN Method

- https://www.youtube.com/watch?v=jggeUUbPHZs
- https://www.youtube.com/watch?v=uGU8xgJykO0

## Formwork Design

### Floor and Roof formwork Design:

The design load that acts on the slab form consist of:

- self-weight of the reinforced slab plus
- the live load and,
- the weight of the formwork themselves.

| The American concrete institute (ACI) recommended a minimum live load of:  |
|----------------------------------------------------------------------------|
| □ 2.4 kPa                                                                  |
| In case of motorized concrete buggies are used                             |
| □ 3.6 kPa                                                                  |
| <b>❖ ACI recommended a minimum design load (dead plus live):</b> □ 4.8 kPa |
| In case of motorized concrete buggies are used:                            |
| □ 6.0 kPa                                                                  |
|                                                                            |

## > Design steps:

- ☐ Specify the design load.
- ☐ Analyzing the sheathing, joist and stringers as beam under uniformly distributed load supported over one of the three conditions (single span two spans three spans or larger).
- Determining the allowable span for slab from table 13-5& 13-5A by considering the smallest span based on the value of bending, shear and deflection.

| ☐ Design the sheathing.                          |
|--------------------------------------------------|
| ☐ Design the joist.                              |
| ☐ Design the stringers.                          |
| ☐ Check the stringer spans and shore capacity.   |
| ☐ Check the crushing between joist and stringer. |
|                                                  |



Maximum bending moment, shear force and deflection developed by uniformly distributed load can be obtained from table below:

Table 13-4 Maximum bending, shear, and deflection in a uniformly loaded beam

|                       | Support Conditions              |                                |                                |  |  |  |
|-----------------------|---------------------------------|--------------------------------|--------------------------------|--|--|--|
| Туре                  | 1 Span                          | 2 Spans                        | 3 Spans                        |  |  |  |
| Bending moment (inlb) | $M = \frac{wl^2}{96}$           | $M = \frac{wl^2}{96}$          | $M = \frac{wl^2}{120}$         |  |  |  |
| Shear (lb)            | $V=\frac{wl}{24}$               | $V=\frac{5wl}{96}$             | $V = \frac{wl}{20}$            |  |  |  |
| Deflection (in.)      | $\Delta = \frac{5wl^4}{4608El}$ | $\Delta = \frac{wl^4}{2220EI}$ | $\Delta = \frac{wl^4}{1740EI}$ |  |  |  |

#### Notation:

I = length of span (in.)

w =uniform load per foot of span (lb/ft)

E = modulus of elasticity (psi)

I = moment of inertia (in. 4)

#### **Bending**

$$f_b = \frac{M}{S} \tag{13-5}$$

Shear

$$f_{\nu} = \frac{1.5V}{A}$$
 for rectangular wood members (13–6)

$$f_{\nu} = \frac{V}{Ib/Q}$$
 for plywood (13–7)

#### Compression

$$f_c \operatorname{or} f_{c\perp} = \frac{P}{A} \tag{13-8}$$

**Tension** 

$$f_t = \frac{P}{A} \tag{13-9}$$

where  $f_b = \text{actual unit stress for extreme fiber in bending (psi)}$ 

 $f_c$  = actual unit stress in compression parallel to grain (psi)

 $f_{c\perp}$  = actual unit stress in compression perpendicular to grain (psi)

 $f_t$  = actual unit stress in tension (psi)

```
f_{\nu} = actual unit stress in horizontal shear (psi)

A = section area (sq in.)

M = maximum moment (in.-lb)

P = concentrated load (lb)

S = section modulus (cu in.)

V = maximum shear (lb)

Ib/Q = rolling shear constant (sq in./ft)
```

The maximum fiber stress developed in bending, shear and compression resulting from a specified load can be determined from the upper equations.

Table 13-8 Typical values of allowable stress for lumber

| Species<br>(No. 2 Grade, 4 × 4      | Allowable Unit Stress (lb/sq in.)[kPa]<br>(Moisture Content = 19%) |                |                                                |                |                |                      |  |  |
|-------------------------------------|--------------------------------------------------------------------|----------------|------------------------------------------------|----------------|----------------|----------------------|--|--|
| [100 × 100 mm] or smaller)          | F <sub>b</sub>                                                     | F <sub>v</sub> | $	extcolor{blue}{	extcolor{blue}{F_{c\perp}}}$ | F <sub>c</sub> | F <sub>t</sub> | E                    |  |  |
| Douglas fir—larch                   | 1450                                                               | 185            | 385                                            | 1000           | 850            | $1.7 \times 10^6$    |  |  |
|                                     | [9998]                                                             | [1276]         | [2655]                                         | [6895]         | [5861]         | $[11.7 \times 10^6]$ |  |  |
| Hemlock—fir                         | 1150                                                               | 150            | 245                                            | 800            | 675            | $1.4 \times 10^{6}$  |  |  |
|                                     | [7929]                                                             | [1034]         | [1689]                                         | [5516]         | [4654]         | $[9.7 \times 10^6]$  |  |  |
| Southern pine                       | 1400                                                               | 180            | 405                                            | 975            | 825            | $1.6 \times 10^{6}$  |  |  |
| Country parts                       | [9653]                                                             | [1241]         | [2792]                                         | [6723]         | [5688]         | $[11.0 \times 10^6]$ |  |  |
| California redwood                  | 1400                                                               | 160            | 425                                            | 1000           | 800            | $1.3 \times 10^{6}$  |  |  |
|                                     | [9653]                                                             | [1103]         | [2930]                                         | [6895]         | [5516]         | $[9.0 \times 10^6]$  |  |  |
| Eastern spruce                      | 1050                                                               | 140            | 255                                            | 700            | 625            | $1.2 \times 10^{6}$  |  |  |
| Laston opias                        | [7240]                                                             | [965]          | [1758]                                         | [4827]         | [4309]         | $[8.3 \times 10^6]$  |  |  |
| Reduction factor for wet conditions | 0.86                                                               | 0.97           | 0.67                                           | 0.70           | 0.84           | 0.97                 |  |  |
| Load duration factor (7-day load)   | 1.25                                                               | 1.25           | 1.25                                           | 1.25           | 1.25           | 1.00                 |  |  |

Table 13-5A Metric (SI) concrete form design equations

|                             |                                                                   | Support Conditions                                                |                                                                   |  |
|-----------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Design Conditions           | 1 Span                                                            | 2 Spans                                                           | 3 or More Spans                                                   |  |
| Bending                     |                                                                   |                                                                   |                                                                   |  |
| Wood                        | $\ell = \frac{36.5}{1000} d \left( \frac{F_b b}{w} \right)^{1/2}$ | $\ell = \frac{36.5}{1000} d \left( \frac{F_b b}{w} \right)^{1/2}$ | $\ell = \frac{40.7}{1000} d \left( \frac{F_b b}{w} \right)^{1/2}$ |  |
|                             | $\ell = \frac{89.9}{1000} \left(\frac{F_b S}{w}\right)^{1/2}$     | $\ell = \frac{89.9}{1000} \left(\frac{F_b S}{w}\right)^{1/2}$     | $\ell = \frac{100}{1000} \left( \frac{F_b S}{w} \right)^{1/2}$    |  |
| Plywood                     | $\ell = 2.83 \left( \frac{F_b KS}{w} \right)^{1/2}$               | $\ell = 2.83 \left( \frac{F_b KS}{w} \right)^{1/2}$               | $\ell = 3.16 \left( \frac{F_b KS}{w} \right)^{1/2}$               |  |
| Shear                       | \ /                                                               | \ /                                                               | ( '' )                                                            |  |
| Wood                        | $\ell = \frac{1.34}{1000} \frac{F_v A}{w} + 2d$                   | $\ell = \frac{1.07}{1000} \frac{F_{\nu}A}{w} + 2d$                | $\ell = \frac{1.11}{1000} \frac{F_{\nu}A}{w} + 2d$                |  |
| Plywood                     | $\ell = 2.00  \frac{F_s Ib/Q}{w} + 2d$                            | $\ell = 1.60  \frac{F_s Ib/Q}{w} + 2d$                            | $\ell = 1.67  \frac{F_s Ib/Q}{w} + 2d$                            |  |
| Deflection                  | $\ell = \frac{526}{1000} \left(\frac{EI\Delta}{w}\right)^{1/4}$   | $\ell = \frac{655}{1000} \left( \frac{El\Delta}{w} \right)^{1/4}$ | $\ell = \frac{617}{1000} \left( \frac{EI\Delta}{w} \right)^{1/4}$ |  |
| If $\Delta = \frac{1}{180}$ | $\ell = \frac{75.1}{1000} \left(\frac{EI}{w}\right)^{1/3}$        | $\ell = \frac{101}{1000} \left( \frac{EI}{w} \right)^{1/3}$       | $\ell = \frac{93.0}{1000} \left(\frac{EI}{w}\right)^{1/3}$        |  |
| If $\Delta = \frac{1}{240}$ | $\ell = \frac{68.5}{1000} \left(\frac{EI}{w}\right)^{1/3}$        | $\ell = \frac{91.7}{1000} \left(\frac{EI}{w}\right)^{1/3}$        | $\ell = \frac{84.7}{1000} \left(\frac{EI}{w}\right)^{1/3}$        |  |
| If $\Delta = \frac{1}{360}$ | $\ell = \frac{59.8}{1000} \left(\frac{EI}{w}\right)^{1/3}$        | $\ell = \frac{79.9}{1000} \left(\frac{EI}{w}\right)^{1/3}$        | $\ell = \frac{73.8}{1000} \left(\frac{EI}{w}\right)^{1/3}$        |  |
| Compression                 | $f_c$ or $f_{c\perp} = \frac{P}{A}$                               |                                                                   | ` '                                                               |  |
| Tension                     | $f_t = \frac{P}{A}$                                               |                                                                   |                                                                   |  |

**Table 13–7** Section properties of U.S. standard lumber and timber (b = width, d = depth)

|        |                     | Actual Size<br>(S4S) |       |                                 |        |                                 |        | Modulus<br>S                    | Momen | t of Inertia |
|--------|---------------------|----------------------|-------|---------------------------------|--------|---------------------------------|--------|---------------------------------|-------|--------------|
| in.    | in.                 | mm                   | in.²  | 10 <sup>3</sup> mm <sup>2</sup> | in.3   | 10 <sup>5</sup> mm <sup>3</sup> | in.⁴   | 10 <sup>6</sup> mm <sup>4</sup> |       |              |
| 1 × 3  | 0.75 × 2.5          | 19×64                | 1.875 | 1.210                           | 0.7812 | 0.1280                          | 0.9766 | 0.4065                          |       |              |
| 1 × 4  | $0.75 \times 3.5$   | 19×89                | 2.625 | 1.694                           | 1.531  | 0.2509                          | 2.680  | 1.115                           |       |              |
| 1×6    | $0.75 \times 5.5$   | 19×140               | 4.125 | 2.661                           | 3.781  | 0.6196                          | 10.40  | 4.328                           |       |              |
| 1 × 8  | $0.75 \times 7.25$  | 19×184               | 5.438 | 3.508                           | 6.570  | 1.077                           | 23.82  | 9.913                           |       |              |
| 1 × 10 | $0.75 \times 9.25$  | 19 × 235             | 6.938 | 4.476                           | 10.70  | 1.753                           | 49.47  | 20.59                           |       |              |
| 1 × 12 | $0.75 \times 11.25$ | 19×286               | 8.438 | 5.444                           | 15.82  | 2.592                           | 88.99  | 37.04                           |       |              |
| 2×3    | $1.5 \times 2.5$    | 38 × 64              | 3.750 | 2.419                           | 1.563  | 0.2561                          | 1.953  | 0.8129                          |       |              |
| 2×4    | $1.5 \times 3.5$    | 38 × 89              | 5.250 | 3.387                           | 3.063  | 0.5019                          | 5.359  | 2.231                           |       |              |
| 2×6    | $1.5 \times 5.5$    | 38×140               | 8.250 | 5.323                           | 7.563  | 1.239                           | 20.80  | 8.656                           |       |              |
| 2×8    | $1.5 \times 7.25$   | 38 × 184             | 10.88 | 7.016                           | 13.14  | 2.153                           | 47.63  | 19.83                           |       |              |
| 2×10   | $1.5 \times 9.25$   | 38 × 235             | 13.88 | 8.952                           | 21.39  | 3.505                           | 98.93  | 41.18                           |       |              |
| 2 × 12 | 1.5 × 11.25         | 38 × 286             | 16.88 | 10.89                           | 31.64  | 5.185                           | 178.0  | 74.08                           |       |              |
| 2×14   | $1.5 \times 13.25$  | 38 × 337             | 19.88 | 12.82                           | 43.89  | 7.192                           | 290.8  | 121.0                           |       |              |
| 3×4    | $2.5 \times 3.5$    | 64 × 89              | 8.750 | 5.645                           | 5.104  | 0.8364                          | 8.932  | 3.718                           |       |              |
| 3×6    | $2.5 \times 5.5$    | 64×140               | 13.75 | 8.871                           | 12.60  | 2.065                           | 34.66  | 14.43                           |       |              |
| 3×8    | $2.5 \times 7.25$   | 64 × 184             | 18.12 | 11.69                           | 21.90  | 3.589                           | 79.39  | 33.04                           |       |              |
| 3×10   | $2.5 \times 9.25$   | 64 × 235             | 23.12 | 14.91                           | 35.65  | 5.842                           | 164.9  | 68.63                           |       |              |
| 3×12   | 2.5 × 11.25         | 64 × 286             | 28.12 | 18.14                           | 52.73  | 8.642                           | 296.6  | 123.5                           |       |              |
| 3×14   | $2.5 \times 13.25$  | $64 \times 337$      | 33.12 | 21.37                           | 73.15  | 11.99                           | 484.6  | 201.7                           |       |              |
| 3×16   | 2.5 × 15.25         | 64 × 387             | 38.12 | 24.60                           | 96.90  | 15.88                           | 738.9  | 307.5                           |       |              |
| 4 × 4  | $3.5 \times 3.5$    | 89 × 89              | 12.25 | 7.903                           | 7.146  | 1.171                           | 12.50  | 5.205                           |       |              |
| 4×6    | $3.5 \times 5.5$    | 89 × 140             | 19.25 | 12.42                           | 17.65  | 2.892                           | 48.53  | 20.20                           |       |              |
| 4×8    | $3.5 \times 7.25$   | 89 × 184             | 25.38 | 16.37                           | 30.66  | 5.024                           | 111.1  | 46.26                           |       |              |
| 4 × 10 | $3.5 \times 9.25$   | 89 × 235             | 32.38 | 20.89                           | 49.91  | 8.179                           | 230.8  | 96.08                           |       |              |
| 4 × 12 | $3.5 \times 11.25$  | 89 × 286             | 39.38 | 25.40                           | 73.83  | 12.10                           | 415.3  | 172.8                           |       |              |
| 4 × 14 | $3.5 \times 13.25$  | 89 × 337             | 46.38 | 29.92                           | 102.4  | 16.78                           | 678.5  | 282.4                           |       |              |
| 4×16   | $3.5 \times 15.25$  | 89 × 387             | 53.38 | 34.43                           | 135.7  | 22.23                           | 1034   | 430.6                           |       |              |
| 6×6    | $5.5 \times 5.5$    | 140 × 140            | 30.25 | 19.52                           | 27.73  | 4.543                           | 76.25  | 19.52                           |       |              |
| 6×8    | $5.5 \times 7.5$    | 140 × 191            | 41.25 | 26.61                           | 51.56  | 8.450                           | 193.4  | 80.48                           |       |              |
| 6 × 10 | $5.5 \times 9.5$    | 140 × 241            | 52.25 | 33.71                           | 82.73  | 13.56                           | 393.0  | 163.6                           |       |              |
| 6 × 12 | 5.5 × 11.5          | 140 × 292            | 63.25 | 40.81                           | 121.2  | 19.87                           | 697.1  | 290.1                           |       |              |
| 6 × 14 | 5.5 × 13.5          | 140 × 343            | 74.25 | 47.90                           | 167.1  | 27.38                           | 1128   | 469.4                           |       |              |
| 6×16   | 5.5 × 15.5          | 140 × 394            | 85.25 | 55.00                           | 220.2  | 36.09                           | 1707   | 710.4                           |       |              |



## EXAMPLE 13-1

- Design the formwork (Figure 13-2) for an elevated concrete floor slab 6 in. (152 mm) thick.
- Sheathing will be nominal 1 in. (25-mm) lumber
- A 2 x 8 in. (50 x 200 mm) lumber will be used for joists.
- Stringers will be 4 x 8 in. (100 x 200 mm) lumber.
- Assume that all members are continuous over three or more spans.
- Commercial 4000-lb (17.8-kN) shores will be used.
- It is estimated that the weight of the formwork will be 5 lb/sq ft (0.24 kPa).
- The adjusted allowable stresses for the lumber being used are as follows:

## **EXAMPLE 13-1**

| -                        | Sheathing<br>psi [kPa] | Other Members<br>psi [kPa] |
|--------------------------|------------------------|----------------------------|
| $\overline{F_b}$         | 1075 [7412]            | 1250 [8619]                |
| $F_b \\ F_v$             | 174 [1200]             | 180 [1241]                 |
| $F_{c\perp}$             |                        | 405 [2792]                 |
| $F_{c\perp} \ F_{c} \ E$ |                        | 850 [5861]                 |
| E                        | $1.36 	imes 10^6$      | $1.40\times10^{6}$         |
|                          | $[9.4 	imes 10^6]$     | $[9.7 \times 10^6]$        |

- Maximum deflection of form members will be limited to 1/360.
- Use the minimum value of live load permitted by ACI.
- Determine joist spacing, stringer spacing, and shore spacing.



## Solution

**Design Load.** Assume concrete density is 150 lb/cu ft (2403 kg/m<sup>3</sup>)

```
Concrete = 1 sq ft \times 6/12 ft \times 150 lb/cu ft = 75 lb/sq ft

Formwork = 5 lb/sq ft

Live load = 50 \text{ lb/sq ft}

Design load = 130 \text{ lb/sq ft}
```

```
Pressure per m<sup>2</sup>:
```

```
\begin{aligned} \text{Concrete} &= 1 \times 0.152 \times 9.8 \times 2403/1000 = 3.58 \text{ kPa} \\ &= 0.24 \text{ kPa} \\ \text{Live load} &= \underline{2.40 \text{ kPa}} \\ \text{Design load} &= 6.22 \text{ kPa} \end{aligned}
```

$$1 \text{ kPa} = 1 \text{ kN/ m}^2$$

# Figure 13-2 Slab form



- Consider a uniformly loaded strip of decking (sheathing) 1 m wide placed perpendicular to the joists (Figure 13-1a) and analyze it as a beam.
- Assume that the strip is continuous over three or more spans and use the appropriate equations of Table 13-5 and 13-5A.
- $w = (1 \text{ sq ft/lin ft}) \times (130 \text{ lb/sq ft}) = 130 \text{ lb/ft}$
- $[w = (1 m^2/lin m) x (6.22 kN/m^2) = 6.22 kN/m]$

# Figure 13-1 Design Analysis for form member

Section

Elevation





$$w = design load (lb/sq ft) [kN/m^2]$$
  
 $w_1 = 1 \times w = w (lb/ft) [kN/m]$ 

a. Sheathing

### (a) Bending:

$$l = 4.46 d \left(\frac{F_b b}{w}\right)^{1/2}$$

$$= (4.46) (0.75) \left(\frac{(1075) (12)}{130}\right)^{1/2} = 33.3 \text{ in.}$$

$$\left[l = \frac{40.7}{1000} d \left(\frac{F_b b}{w}\right)^{1/2}\right]$$

$$= \frac{(40.7) (19)}{1000} \left(\frac{(7412) (1000)}{6.22}\right)^{1/2} = 844 \text{ mm}$$

|                  | Sheathing<br>psi [kPa] | Other Members<br>psi [kPa] |
|------------------|------------------------|----------------------------|
| $\overline{F_b}$ | 1075 [7412]            | 1250 [8619]                |
| $F_v$            | 174 [1200]             | 180 [1241]                 |
| $F_{c\perp}$     |                        | 405 [2792]                 |
| $F_c$            |                        | 850 [5861]                 |
| E                | $1.36 \times 10^{6}$   | $1.40 \times 10^6$         |
|                  | $[9.4 \times 10^{6}]$  | $[9.7 \times 10^6]$        |

Table 13-5A Metric (SI) concrete form design equations

|                             |                                                                   | Support Conditions                                                |                                                                   |  |
|-----------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|--|
| Design Conditions           | 1 Span                                                            | 2 Spans                                                           | 3 or More Spans                                                   |  |
| Bending                     |                                                                   |                                                                   |                                                                   |  |
| Wood                        | $\ell = \frac{36.5}{1000} d \left( \frac{F_b b}{w} \right)^{1/2}$ | $\ell = \frac{36.5}{1000} d \left( \frac{F_b b}{w} \right)^{1/2}$ | $\ell = \frac{40.7}{1000} d \left( \frac{F_b b}{w} \right)^{1/2}$ |  |
|                             | $\ell = \frac{89.9}{1000} \left( \frac{F_b S}{w} \right)^{1/2}$   | $\ell = \frac{89.9}{1000} \left(\frac{F_b S}{w}\right)^{1/2}$     | $\ell = \frac{100}{1000} \left( \frac{F_b S}{w} \right)^{1/2}$    |  |
| Plywood                     | $\ell = 2.83 \left( \frac{F_b KS}{w} \right)^{1/2}$               | $\ell = 2.83 \left( \frac{F_b KS}{w} \right)^{1/2}$               | $\ell = 3.16 \left( \frac{F_b KS}{w} \right)^{1/2}$               |  |
| Shear                       | \ /                                                               | ( )                                                               | ( " )                                                             |  |
| Wood                        | $\ell = \frac{1.34}{1000}  \frac{F_v A}{w} + 2d$                  | $\ell = \frac{1.07}{1000}  \frac{F_{\nu} A}{w} + 2d$              | $\ell = \frac{1.11}{1000} \frac{F_v A}{w} + 2d$                   |  |
| Plywood                     | $\ell = 2.00  \frac{F_s Ib/Q}{w} + 2d$                            | $\ell = 1.60  \frac{F_s Ib/Q}{w} + 2d$                            | $\ell = 1.67 \frac{F_s Ib/Q}{w} + 2d$                             |  |
| Deflection                  | $\ell = \frac{526}{1000} \left(\frac{EI\Delta}{w}\right)^{1/4}$   | $\ell = \frac{655}{1000} \left(\frac{El\Delta}{w}\right)^{1/4}$   | $\ell = \frac{617}{1000} \left( \frac{El\Delta}{w} \right)^{1/4}$ |  |
| If $\Delta = \frac{1}{180}$ | $\ell = \frac{75.1}{1000} \left(\frac{EI}{w}\right)^{1/3}$        | $\ell = \frac{101}{1000} \left( \frac{EI}{w} \right)^{1/3}$       | $\ell = \frac{93.0}{1000} \left(\frac{El}{w}\right)^{1/3}$        |  |
| If $\Delta = \frac{1}{240}$ | $\ell = \frac{68.5}{1000} \left(\frac{EI}{w}\right)^{1/3}$        | $\ell = \frac{91.7}{1000} \left(\frac{EI}{w}\right)^{1/3}$        | $\ell = \frac{84.7}{1000} \left(\frac{EI}{w}\right)^{1/3}$        |  |
| If $\Delta = \frac{1}{360}$ | $\ell = \frac{59.8}{1000} \left(\frac{EI}{w}\right)^{1/3}$        | $\ell = \frac{79.9}{1000} \left(\frac{EI}{w}\right)^{1/3}$        | $\ell = \frac{73.8}{1000} \left(\frac{EI}{w}\right)^{1/3}$        |  |
| Compression                 | $f_c$ or $f_{c\perp} = \frac{P}{A}$                               |                                                                   | . ,                                                               |  |
| Tension                     | $f_t = \frac{P}{A}$                                               |                                                                   |                                                                   |  |

### (b) Shear:

$$l = 13.3 \frac{F_v A}{w} + 2d$$
 
$$= \frac{(13.3) (174) (12) (0.75)}{130} + (2) (0.75) = 161.7 \text{ in.}$$

$$\begin{bmatrix} l = \frac{1.11}{1000} \frac{F_v A}{w} + 2d \\ = \frac{(1.11) (1200) (1000) (19)}{(1000) (6.22)} + (2) (19) = 4107 \text{ mm} \end{bmatrix}$$

(c) Deflection:

$$\begin{split} l &= 1.69 \left(\frac{EI}{w}\right)^{1/3} = 1.69 \left(\frac{Ebd^3}{w \ 12}\right)^{1/3} \\ &= 1.69 \left(\frac{(1.36 \times 10^6) \ (12) \ (0.75)^3}{(130) \ (12)}\right)^{1/3} = 27.7 \ \text{in.} \\ \\ \left[l &= \frac{73.8}{1000} \left(\frac{EI}{w}\right)^{1/3} = \frac{73.8}{1000} \left(\frac{Ebd^3}{w \ 12}\right)^{1/3} \\ &= \frac{73.8}{1000} \left(\frac{(9.4 \times 10^6) \ (1000) \ (19)^3}{(12) \ (6.22)}\right)^{1/3} = 703 \ \text{mm} \end{split} \right] \end{split}$$

- Deflection governs in this case and the maximum allowable span is 27.7 in. (703 mm).
- We will select a 24-in. (610-mm) joist spacing as a modular value for the design.

- Consider the joist as a uniformly loaded beam supporting a strip of design load 24 in. (610 mm) wide (same as joist spacing; see Figure 13-1b).
- Joists are 2 x 8 in. (50 x 200 mm) lumber.
- Assume that the joists are continuous over three spans.
- $w = (2 \text{ ft}) \times (1) \times (130 \text{ lb/sq ft}) = 260 \text{ lb/ft}$
- [  $w = (0.610 \text{ m}) \times (1) \times (6.22 \text{ kPa}) = 3.79 \text{ kN/m}$ ]

# Figure 13-1 Design Analysis for form member



### (a) Bending:

$$l = 10.95 \left(\frac{F_b S}{w}\right)^{1/2}$$

$$= 10.95 \left(\frac{(1250) (13.14)}{260}\right)^{1/2} = 87.0 \text{ in.}$$

$$\begin{bmatrix} l = \frac{100}{1000} \left(\frac{F_b S}{w}\right)^{1/2} \\ = \frac{100}{1000} \left(\frac{(8619) (2.153 \times 10^5)}{3.79}\right)^{1/2} = 2213 \text{ mm} \end{bmatrix}$$

|                  | Sheathing<br>psi [kPa] | Other Members<br>psi [kPa] |
|------------------|------------------------|----------------------------|
| $\overline{F_b}$ | 1075 [7412]            | 1250 [8619]                |
| $F_v$            | 174 [1200]             | 180 [1241]                 |
| $F_{c\perp}$     |                        | 405 [2792]                 |
| $F_c$            |                        | 850 [5861]                 |
| E                | $1.36 \times 10^{6}$   | $1.40 \times 10^6$         |
|                  | $[9.4 	imes 10^6]$     | $[9.7 \times 10^6]$        |

**Table 13–7** Section properties of U.S. standard lumber and timber (b = width, d = depth)

| Nominal<br>Size<br>(b×d) |                     | Actual Size<br>(S4S) |       | Area of Section  A              |        | Section Modulus<br>S            |        | t of Inertia                    |
|--------------------------|---------------------|----------------------|-------|---------------------------------|--------|---------------------------------|--------|---------------------------------|
| in.                      | in.                 | mm                   | in.²  | 10 <sup>3</sup> mm <sup>2</sup> | in.3   | 10 <sup>5</sup> mm <sup>3</sup> | in.⁴   | 10 <sup>6</sup> mm <sup>4</sup> |
| 1×3                      | 0.75 × 2.5          | 19×64                | 1.875 | 1.210                           | 0.7812 | 0.1280                          | 0.9766 | 0.4065                          |
| 1 × 4                    | $0.75 \times 3.5$   | 19×89                | 2.625 | 1.694                           | 1.531  | 0.2509                          | 2.680  | 1.115                           |
| 1×6                      | $0.75 \times 5.5$   | 19×140               | 4.125 | 2.661                           | 3.781  | 0.6196                          | 10.40  | 4.328                           |
| 1 × 8                    | $0.75 \times 7.25$  | 19 × 184             | 5.438 | 3.508                           | 6.570  | 1.077                           | 23.82  | 9.913                           |
| 1 × 10                   | $0.75 \times 9.25$  | 19 × 235             | 6.938 | 4.476                           | 10.70  | 1.753                           | 49.47  | 20.59                           |
| 1 × 12                   | $0.75 \times 11.25$ | 19×286               | 8.438 | 5.444                           | 15.82  | 2.592                           | 88.99  | 37.04                           |
| 2×3                      | $1.5 \times 2.5$    | 38 × 64              | 3.750 | 2.419                           | 1.563  | 0.2561                          | 1.953  | 0.8129                          |
| 2 × 4                    | $1.5 \times 3.5$    | 38 × 89              | 5.250 | 3.387                           | 3.063  | 0.5019                          | 5.359  | 2.231                           |
| 2×6                      | $1.5 \times 5.5$    | 38 × 140             | 8.250 | 5.323                           | 7.563  | 1.239                           | 20.80  | 8.656                           |
| 2×8                      | $1.5 \times 7.25$   | 38 × 184             | 10.88 | 7.016                           | 13.14  | 2.153                           | 47.63  | 19.83                           |
| 2×10                     | $1.5 \times 9.25$   | 38 × 235             | 13.88 | 8.952                           | 21.39  | 3.505                           | 98.93  | 41.18                           |
| 2 × 12                   | 1.5 × 11.25         | 38 × 286             | 16.88 | 10.89                           | 31.64  | 5.185                           | 178.0  | 74.08                           |
| 2 × 14                   | 1.5 × 13.25         | 38 × 337             | 19.88 | 12.82                           | 43.89  | 7.192                           | 290.8  | 121.0                           |
| 3×4                      | $2.5 \times 3.5$    | 64 × 89              | 8.750 | 5.645                           | 5.104  | 0.8364                          | 8.932  | 3.718                           |
| 3×6                      | $2.5 \times 5.5$    | 64×140               | 13.75 | 8.871                           | 12.60  | 2.065                           | 34.66  | 14.43                           |
| 3×8                      | $2.5 \times 7.25$   | 64 × 184             | 18.12 | 11.69                           | 21.90  | 3.589                           | 79.39  | 33.04                           |
| 3×10                     | $2.5 \times 9.25$   | 64 × 235             | 23.12 | 14.91                           | 35.65  | 5.842                           | 164.9  | 68.63                           |
| 3 × 12                   | 2.5 × 11.25         | 64 × 286             | 28.12 | 18.14                           | 52.73  | 8.642                           | 296.6  | 123.5                           |
| 3×14                     | $2.5 \times 13.25$  | $64 \times 337$      | 33.12 | 21.37                           | 73.15  | 11.99                           | 484.6  | 201.7                           |
| 3×16                     | 2.5 × 15.25         | 64 × 387             | 38.12 | 24.60                           | 96.90  | 15.88                           | 738.9  | 307.5                           |
| 4×4                      | $3.5 \times 3.5$    | 89 × 89              | 12.25 | 7.903                           | 7.146  | 1.171                           | 12.50  | 5.205                           |
| 4×6                      | $3.5 \times 5.5$    | 89 × 140             | 19.25 | 12.42                           | 17.65  | 2.892                           | 48.53  | 20.20                           |
| 4×8                      | $3.5 \times 7.25$   | 89 × 184             | 25.38 | 16.37                           | 30.66  | 5.024                           | 111.1  | 46.26                           |
| 4×10                     | $3.5 \times 9.25$   | 89 × 235             | 32.38 | 20.89                           | 49.91  | 8.179                           | 230.8  | 96.08                           |
| 4 × 12                   | $3.5 \times 11.25$  | 89 × 286             | 39.38 | 25.40                           | 73.83  | 12.10                           | 415.3  | 172.8                           |
| 4 × 14                   | $3.5 \times 13.25$  | 89 × 337             | 46.38 | 29.92                           | 102.4  | 16.78                           | 678.5  | 282.4                           |
| 4×16                     | $3.5 \times 15.25$  | 89 × 387             | 53.38 | 34.43                           | 135.7  | 22.23                           | 1034   | 430.6                           |
| 6×6                      | 5.5 × 5.5           | 140 × 140            | 30.25 | 19.52                           | 27.73  | 4.543                           | 76.25  | 19.52                           |
| 6×8                      | $5.5 \times 7.5$    | 140 × 191            | 41.25 | 26.61                           | 51.56  | 8.450                           | 193.4  | 80.48                           |
| 6×10                     | $5.5 \times 9.5$    | 140 × 241            | 52.25 | 33.71                           | 82.73  | 13.56                           | 393.0  | 163.6                           |
| 6 × 12                   | 5.5 × 11.5          | 140 × 292            | 63.25 | 40.81                           | 121.2  | 19.87                           | 697.1  | 290.1                           |
| 6×14                     | 5.5 × 13.5          | 140 × 343            | 74.25 | 47.90                           | 167.1  | 27.38                           | 1128   | 469.4                           |
| 6×16                     | 5.5 × 15.5          | 140 × 394            | 85.25 | 55.00                           | 220.2  | 36.09                           | 1707   | 710.4                           |

### (b) Shear:

$$l = 13.3 \frac{F_v A}{w} + 2d$$

$$= \frac{(13.3) (180) (10.88)}{260} + (2) (7.25) = 114.7 \text{ in.}$$

$$\begin{bmatrix} l = \frac{1.11}{1000} \frac{F_v A}{w} + 2d \\ = \frac{1.11}{1000} \frac{(1241) (7016)}{3.79} + (2)(184) = 2918 \text{ mm} \end{bmatrix}$$

### (c) Deflection:

$$l = 1.69 \left(\frac{EI}{w}\right)^{1/3}$$

$$= 1.69 \left(\frac{(1.4 \times 10^6)(47.63)}{260}\right)^{1/3} = 107.4 \text{ in.}$$

$$l = \frac{73.8}{1000} \left(\frac{EI}{w}\right)^{1/3}$$

$$= \frac{73.8}{1000} \left(\frac{(9.7 \times 10^6)(19.83 \times 10^6)}{3.79}\right)^{1/3} = 2732 \text{ mm}$$

- Thus bending governs and the maximum joist span is 87 in. (2213 mm).
- We will select a stringer spacing (joist span) of 84 in (7 ft). (2134 mm).

- To analyze stringer design, consider a strip of design load 7 ft (2.13 m) wide (equal to stringer spacing) as resting directly on the stringer (Figure 13-1c).
- Assume the stringer to be continuous over three spans.
- Stringers are 4 x 8 (100 x 200 mm) lumber.
- Now analyze the stringer as a beam and determine the maximum allowable span.
- w = (7)(130) = 910 lb/ft
- [w = (2.13)(1)(6.22) = 13.25 kN/m]

# Figure 13-1 Design Analysis for form member



### (a) Bending:

$$l = 10.95 \left(\frac{F_b S}{w}\right)^{1/2}$$

$$= 10.95 \left(\frac{(1250) (30.66)}{910}\right)^{1/2} = 71.1 \text{ in.}$$

$$l = \frac{100}{1000} \left(\frac{F_b S}{w}\right)^{1/2}$$

$$= \frac{100}{1000} \left(\frac{(8619) (5.024 \times 10^5)}{13.25}\right)^{1/2} = 1808 \text{ mm}$$

(b) Shear:

$$l = \frac{13.3 F_v A}{w} + 2d$$

$$= \frac{(13.3) (180) (25.38)}{910} + (2) (7.25) = 81.3 \text{ in.}$$

$$l = \frac{1.11}{1000} \frac{F_v A}{w} + 2d$$

$$= \frac{1.11}{1000} \frac{(1241) (16.37 \times 10^3)}{13.25} + (2) (184) = 2070 \text{ mm}$$

(c) Deflection:

$$\begin{split} l &= 1.69 \left( \frac{EI}{w} \right)^{1/3} \\ &= 1.69 \left( \frac{(1.4 \times 10^6) \; (111.1)}{910} \right)^{1/3} = 93.8 \; \text{in.} \\ &\left[ l = \frac{73.8}{1000} \left( \frac{EI}{w} \right)^{1/3} \right. \\ &= \frac{73.8}{1000} \left( \frac{(9.7 \times 10^6) \; (46.26 \times 10^6)}{13.25} \right)^{1/3} = 2388 \; \text{mm} \right] \end{split}$$

Bending governs and the maximum span is 71.1 in. (1808 mm).

# **Check Shore Strength**

 Bending governs, The maximum stringer span is 71.1 in. (1808 mm).



# **Check Shore Strength**

- Now we must check shore strength before selecting the stringer span (shore spacing).
- The maximum stringer span based on shore strength is equal to the shore strength divided by the load per unit length of stringer.

$$l = \frac{4000}{910} \times 12 = 52.7$$
 in.

$$\left[l = \frac{17.8}{13.25} = 1.343 \text{ m}\right]$$

- Thus the maximum stringer span is limited by shore strength to 52.7 in. (1.343 m).
- We select a shore spacing of 4 ft (1.22 m) as a modular value.



# **Check for Crushing**

- Before completing our design, we should check for crushing at the point where each joist rests on a stringer.
- The load at this point is the load per unit length of joist multiplied by the joist span.

$$P = (260) (84/12) = 1820 \text{ lb}$$
 
$$[P = (3.79) (2.134) = 8.09 \text{ kN}]$$
 Bearing area (A) = (1.5)(3.5) = 5.25 sq in. 
$$[A = (38) (89) = 3382 \text{ mm}^2]$$
 
$$f_{c\perp} = \frac{P}{A} = \frac{1820}{5.25} = 347 \text{ psi} < 405 \text{ psi} (F_{c\perp})$$
 
$$OK$$
 
$$\left[f_{c\perp} = \frac{8.09 \times 10^6}{3382} = 2392 \text{ kPa} < 2792 \text{ kPa} (f_{c\perp})\right]$$

# Final Design

- Decking: nominal1-in. (25-mm) lumber
- Joists: 2 x 8's (50 x 200-mm) at 24-in. (610-mm) spacing
- Stringers: 4 x 8's (100 x 200-mm) at 84-in.
  (2.13-m) spacing
- Shore: 4000-lb (17.8-kN) commercial shores at 48-in. (1.22-m) intervals