Three (common) phases of matter:

- Solid: Maintains shape \& size (approx.), even under large forces.
- Liquid: No fixed shape. Takes shape of container.
- Gas: Neither fixed shape, nor fixed volume. Expands to
fill container

Density and Pressure

-Density
In fluids, we are interested in properties that can vary from point to point.
Thus, it is more useful to speak of density and pressure than of mass and
force.

$\rho=m / v$ (uniform density)

-Density is a scalar, the SI unit is $\mathbf{k g} / \mathrm{m}^{3}$.

- Pressure

$$
P \equiv \frac{F}{A}
$$

(pressure of uniform force on flat area)

- F is the magnitude of the normal force on area A.
- The SI unit of pressure is $\mathrm{N} / \mathrm{m}^{2}$, called the Pascal (Pa).
- The tire pressure of cars are in kilopascals.

13.2. The Equation of Continuity

A fluid moving with steady flow through a pipe of varying cross-sectional area. The volume of fluid flowing through area A_{1} in a time interval t must equal the volume flowing through area A_{2} in the same time interval.
Therefore,

$$
A_{1} v_{1}=A_{2} v_{2}=\text { constant }
$$

This expression is called the equation of continuity for fluids.

- It states that the product of the area and the fluid speed at all points along a pipe is constant for an incompressible fluid.

Example

A water pipe leading up to a hose has a radius of 1 cm . water leaves the hose at a rate of 3 litres per minute.
a) Find the velocity of the water in the pipe.
b) The hose has a radius of 0.5 cm . What is the velocity of the water in the hose?

Fluid Flow

1. The fluid is nonviscous. In a nonviscous fluid, internal friction is neglected. An object moving through the fluid experiences no viscous force.
2. The flow is steady. In steady (laminar) flow, the velocity of the fluid at each point remains constant.
3. The fluid is incompressible. The density of an incompressible fluid is constant.
4. The flow is irrotational. In irrotational flow, the fluid has no angular momentum about any point.
5. If a small paddle wheel placed anywhere in the fluid does not rotate about the wheel's center of mass, then the flow is irrotational.
6. The path taken by a fluid particle under steady flow is called a streamline.

13.3. Bernoulli's Equation

This is Bernoulli's equation as applied to an ideal fluid. It is often expressed as

$$
P+\frac{1}{2} \rho v^{2}+\rho g y=\text { constant }
$$

$p_{1}+\frac{1}{2} \rho v_{1}^{2}+\rho g y_{1}=p_{2}+\frac{1}{2} \rho v_{2}^{2}+\rho g y_{2}$
$p+\frac{1}{2} \rho v^{2}+\rho g y=$ a constant (Bernoulli's equation)

- If $y_{1}=y_{2}$, then

$$
p_{1}+\frac{1}{2} \rho v_{1}^{2}=p_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

- If the speed of a fluid element increases as it travels along a horizontal streamline, the pressure of the fluid must decrease, and
conversely.
- Large speed means small pressure.

4- Static Consequences of Bernoulli's Equation

When the fluid is at rest $v=0, p+\rho g h$ is constant:

$$
P_{1}+\rho g h_{1}=P_{2}+\rho g h_{2}
$$

The pressure at the same depth at two places in a fluid at rest is the same:

$$
P_{1}=P_{2}
$$

Example 1

What is the pressure on a swimmer 5 m below the surface of a lake?

Example 2

The pressure 1 m above a floor is measured to be normal atmospheric pressure, $1.013 \times 10^{5} \mathbf{P a}$. How much greater is the pressure at the floor if the temperature is $0^{0} \mathrm{C}$? $\rho=1.29 \mathrm{~kg} \cdot \mathrm{~m}^{-3}$

The Open Tube Manometer

The gauge pressure is the difference between the absolute pressure and the atmospheric pressure.

$$
p_{\mathrm{g}}=p_{\mathrm{A}}-p_{0}=\rho g h
$$

The gauge pressure is directly proportional to h. It can be positive or negative depending on whether the absolute pressure is greater or less than the atmospheric pressure.

We can suck fluids up a straw because at that time the absolute pressure in the lungs is less than the atmospheric pressure.

Example:

The U-tube in Figure contains two liquids in static equilibrium: Water
of density $\rho_{\mathrm{w}}\left(=998 \mathrm{~kg} / \mathrm{m}^{3}\right)$ is in the right arm, and oil of unknown density ρ_{x} is in the left. Measurement gives $/=135 \mathrm{~mm}$ and $d=12.3$ mm . What is the density of the oil?

SOLUTION:
We equate the pressure in the two arms at the level of the interface :
$P_{i n t}=p_{0}+\rho_{w} g l \quad$ (right arm $)$
$P_{i n t}=p_{0}+\rho_{x} g(l+d) \quad$ (left arm)
$\rho_{x}=\rho_{v} \frac{1}{l+d}=\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right) \frac{135 \mathrm{~mm}}{135 \mathrm{~mm}+12.3 \mathrm{~mm}} \quad=915 \mathrm{~kg} / \mathrm{m}^{3}$

13.7- Dynamic Consequences of Bernoulli's equation

Since the flow is horizontal, the terms in Bernoulli's equation containing y are equal and cancel, then

$$
P_{1}+1 / 2 \rho v_{1}{ }^{2}=P_{2}+1 / 2 \rho v_{2}{ }^{2}
$$

a very simple example is tear a piece of paper in half and, holding the halves side by side about $2 \mathbf{c m}$ apart, blow between them the pressure difference $\mathbf{P}_{1}-\mathbf{P}_{2}=\mathbf{1} / \mathbf{2} \rho\left(\mathrm{v}_{2}{ }^{2}-\mathrm{v}_{1}{ }^{2}\right)$ results in the sheets moving toward one another, as you will observe if you try it.

The fact that the pressure drops when the velocity increases for a fluid moving at a constant height is a consequence of energy conservation.

Example 13.7

Water enters a basement through a pipe 2 cm in radius at an absolute pressure of 3 atm . A hose with a 0.5 cm radius is used to water plants 10 m above the basement. Find the velocity of the water as it leaves the hose.

$$
\begin{aligned}
P_{h}+\rho g y_{h}+\frac{1}{2} \rho v_{h}^{2} & =P_{p}+\rho g y_{p}+\frac{1}{2} \rho v_{p}^{2} \\
\pi R_{h}^{2} v_{h} & =\pi R_{p}^{2} v_{p}
\end{aligned}
$$

Example 13.4

A water pipe leading up to a hose has a radius of 1 cm . Water leaves the hose at a rate of 3 litres per minute. (a) Find the velocity of the water in the pipe. (b) The hose has a radius of 0.5 cm . What is the velocity of the water in the hose?
(a) The velocity (strictly speaking, the average velocity) can be found from the flow rate and the area. The flow rate is the same in the hose and in the pipe. Using 1 litre $=0.001 \mathrm{~m}^{3}$ and $1 \mathrm{~min}=60 \mathrm{~s}$, the flow rate is

$$
\begin{aligned}
Q & =\frac{\Delta V}{\Delta t}=\frac{0.003 \mathrm{~m}^{3}}{60 \mathrm{~s}} \\
& =5 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

We will call the velocity and area in the pipe v_{1} and A_{1}, respectively. Then, with $Q=A v$, we have

$$
\begin{aligned}
v_{1} & =\frac{Q}{A_{1}}=\frac{Q}{\pi r_{1}^{2}} \\
& =\frac{5 \times 10^{-5} \mathrm{~m} \mathrm{~s}^{-1}}{\pi(0.01 \mathrm{~m})^{2}}=0.159 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

(b) The flow rate is constant, so $A_{1} v_{1}=A_{2} v_{2}$, and the velocity v_{1} in the hose is

$$
\begin{aligned}
v_{2} & =v_{1} \frac{A_{1}}{A_{2}}=v_{1} \frac{\pi r_{1}^{2}}{\pi r_{2}^{2}}=v_{1}\left(\frac{r_{1}}{r_{2}}\right)^{2} \\
& =\left(0.159 \mathrm{~m} \mathrm{~s}^{-1}\right) \frac{1}{(0.5)^{2}}=0.636 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

The water flows faster in the narrower channel.

(a)

(b)

Flgure 13.13. (a) Venturi tube. (b) Enlarged view of the region where column I connects to the flow tube.
columns is at rest while the liquid in the tube is moving. Bernoulli's equation cannot be applied directly to relate the pressures at points C and D in Fig. $13.13 b$ because the fluid at the two points is not in the same streamline. However, if the pressures were unequal, fluid would flow from one point to the other. Since this does not occur, $P_{C}=P_{D}$. Thus the pressure in the columns is the same as the pressure in the streamline.

Bernoulli's equation requires that $P+\rho g y+\frac{1}{2} \rho v^{2}$ is the same everywhere in a flow tube. Applying Bernoulli's equation to points at the same height, in the flow stream just below the columns,

$$
P_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

From the continuity equation, $A_{1} v_{1}=A_{2} v_{2}$, or

$$
\begin{equation*}
\nu_{2}=\frac{A_{1}}{A_{2}} \nu_{1} \tag{13.15}
\end{equation*}
$$

Using this expression for v_{2}, the preceding equation can be written as

$$
\begin{equation*}
P_{1}-P_{2}=\frac{1}{2} \rho v_{1}^{2}\left[\frac{A_{1}^{2}}{A_{2}^{2}}-\frac{1}{1}\right] \tag{13.16}
\end{equation*}
$$

Thus, a measurement of $P_{1}-P_{1}$ and knowledge of the areas determines $v_{1} ; v_{2}$ can also be found using Eq. 13.15.

The following example shows how this flow meter can be used to measure the velocity of the blood in an artery.

Example 13.8
The flow of blood through a large artery in a dog is diverted through a venturi flow meter. The wider part of the flow meter has an area $A_{1}=0.08 \mathrm{~cm}^{2}$, which
equals the cross-sectional area of the artery. The narrower part of the flow meter has an area $A_{2}=0.04 \mathrm{~cm}^{2}$. The pressure drop in the flow meter is 25 Pa . What is the velocity ν_{1} of the blood in the artery?
The ratio of the areas A_{1} / A_{2} is dimensionless and has the value $0.08 / 0.04=2$. From Table 13.1, the density of whole blood is $1059.5 \mathrm{~kg} \mathrm{~m}^{-3}$. Dropping the units, Eq. 13.16 becomes

$$
25=\frac{1}{2}(1059.5) v_{1}^{2}\left(2^{2}-1\right)
$$

Solving for v_{1},

$$
v_{1}=\sqrt{\frac{(2)(25)}{(1059.5)\left(2^{2}-1\right)}}=0.125 \mathrm{~m} \mathrm{~s}^{-1}
$$

The Prandtl Tube I Figure 13.14 shows a Prandtl tube inserted in a flow stream. It interrupts the flow pattern very little except at point A, where the fluid has zero velocity. At point B the velocity is assumed to be the streamline flow velocity v. From

Flgure 10.14. A Prandil tube in a constant velocity flow stream. The right arm of the. U-tube connects to the chamber opening at B. The left connects to the opening it A, where the fluid has zero velocity.
still have it lift off the ground?
Section 13.2 ${ }^{\text {T The Equation of Continuity; }}$ Streamline Flow省
(13-7) A water main with a radius of 0.15 m contain water with an average velocity of $3 \mathrm{~m} \mathrm{~s}^{-1}$. What is the flow rate in the water main? 13-8 In a decorative fountain in a garden, water is shot nearly vertically from a pipe. The stream of water broadens out as it rises. Explain why.
why. A hose delivers 20 litres of water per minute. The diameter of its nozzle is 1 cm . What is the average velocity of the water as it leaves the nozzle?
13-10 The radius of a water pipe decreases from $0.2 \div 0.1 \mathrm{~m}$. If the average velocity in the wider portion is $3 \mathrm{~m} \mathrm{~s}^{-1}$, find the average velocity in the narrower region.
13-11) A garden hose with a cross-sectional area of $2 \mathrm{~cm}^{2}$ has a flow of $200 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. What is the average velocity of the water?
13-12 A blood vessel of radius r splits into four vessels, each with radius $r / 3$. If the average velocity in the larger vessel is v, find the average velocity in each of the smaller vessels.
Section 13.3/Bernoulli's Equation

