Identification of the common laboratory glassware, pipettes and Equipment

(1) Identification of the common laboratory glassware:

a. Conical flasks and beakers.
b. Graduated cylinders [measuring cylinder].

Volumetric flasks.
Burettes.
Pipettes.

(2) Identification of the common laboratory pipettes:

\square Sometimes spelled pipet.
\square Commonly used to transport a measured volume of liquid.
\square Pipettes come in several designs for various purposes with differing levels of accuracy.
\square There are three types of pipettes are used in biochemical laboratory:
(a) Volumetric or transfer pipettes.
(b) Graduated or measuring pipettes (Mohr and Serological Pipettes).
(c) Micropipettes.

Types of pipettes

Comparison between types of pipettes

Volumetric pipettes	Graduated pipettes
Transfer (designed to deliver accurately fixed volume of liquid)	Measuring
Not graduated	Graduated
More accurate	Less accurate
Non-blown out	Some are blown out
Consists of a cylindrical bulb joined at both ends to narrowed glass tubing.	Don’t contain a cylindrical bulb

Smallest division of graduated pipette

Reading the meniscus:

Steps of the Use of the pipettes:

1- Press the pipette into the pump with a slight twisting motion.
2- The pipette is first washed with water ,then rinsed several times with a little of the solution.
3- The pipette then filled to just above the mark , the liquid is allowed to fall to the mark .
4- The solution is allowed to drain into the appropriate vessel with the jet of the pipette touching the wall of the vessel.

5- After the flow of the liquid has stopped, the jet is held against the wall for some times and then removed.

Note:

-For serological pipette, some are of the blown out type; the last drop being blown out against the vessel wall.
-For volumetric pipette a certain amount of liquid will remain at the tip and this must not be "blown out".

Accuracy:

1- Volumetric flasks and volumetric pipettes \rightarrow most accurate.
2- Burets and graduated pipets.
3- Graduated cylinders.
4- Beakers and conical flasks. \rightarrow least accuracy - used only when a rough estimation of
volume is required-

(3) Identification of the common laboratory Equipment:

A. pH meter.

B. Spectrophotometer.

Electronic Balance.

pH and solution acidity:

- PH define as: the negative logarithm of the hydrogen ion concentration.

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

\square So the term pH introduced as a way of expressing hydrogen ion concentration (acidity or alkalinity of a solution).
$\square \mathrm{PH}$ range value $(0-14) \rightarrow$ the higher PH number, the lower the hydrogen ion concentration and vice versa [inverse relationship] .

pH cont':

\square PH determines many important aspects of the structure and activity of biological macromolecules and thus of the behaviour of the cell and organisms.
\square There are many ways in biochemical laboratory to measure PH value such as :

1. litmus paper.

2. Test strips.

3. PH meter \Rightarrow The most accurate and reliable method

(1) pH meter:

- A pH meter is an electronic device used for measuring the pH (acidity or alkalinity) of a liquid.
- Before use it needs to be calibrated.

$\square \mathrm{pH}$ meter contain glass electrode which is very sensitive and readily responds to changes in hydrogen ion concentration .

The glass electrode

- A nice video show you how to use the pH meter: https://www.youtube.com/watch?v=vwY-xWMam7o

（2）Spectrophotometer：

－Spectrophotometer is instrument used to measure the intensity of light that is transmitted or absorbed by a sample at a given wavelength．
－Wavelength in this instrument divided into：

I．Invisible range－ultraviolet－（from 100 to 360 nm ）\rightarrow 【Qumirt cuvette ære used】

II．Visible range（above $360 \mathrm{~nm}-700 \mathrm{~nm}$ ）\rightarrow 【Glass or plastic cuvette ære used］
－Blank ：contain everything except the compound to be measure．

Spectrophotometer Principle

A nice video show you how dose spectrophotometer work:
http://www.youtube.com/watch?v=pxC6F7bK8CU

(2) Spectrophotometer cont':

- By using the spectrophotometer, we can quantitatively measure absorbance, and this information can be used to determine the concentration of the absorbing molecule [concentration of unknown sample].

More concentrated solution will absorb more light and transmits less:
\rightarrow So, the more concentrated solution \longrightarrow high absorbance value.
\rightarrow Less concentrated solution \longrightarrow less absorbance value.

(3) Electronic Balance:

- Electronic Balance is a device used to find accurate measurements of weight.
- It provide the results digitally, making them an easy tool for use.
- The weight can be displayed by different unites.
\square Before waiting any substance, you should (Zero) the balance.

\rightarrow What does mean zeroing of the electronic balance?
$($ mass of paper + substance $)-($ mass of paper $)=($ mass of substance $)$

\square A nice video show you how to use the electronic balance: h https://www.youtube.com/watch?v=0UymyTJATLc

Practical Part

Objective:

\square To be familiar with most common biochemistry lab tools and equipment.

Method and Results:

1. Identificetion of the common leboratory glessware:

Glassware number	Type of glassware	Final volume (capacity)
1		
2		
3		
4		
5		

Method and Results:

2. Comparing between glessware accuracy:

1-Place a beaker in the electronic balance, and read the weight.
2-Remove the beaker from the balance, and add 5 ml of water using a graduated pipette (Mohr).
3-Record the weight.
4-Repeat the procedure again by using measuring cylinder this time.
5-Record the weight.

Type of glassware	Weight of beaker (g)	Weight of beaker + water (g)	Weight of water (g)
Graduated pipette (Mohr)			
Measuring cylinder			

Which one is more accurate?

Method and Results:

3. \dentification of the common laboratory pipettes:

1-Examine the three pipettes placed on your laboratory bench. 2-Record their types and the volume of their smallest division.

	Type of pipette	Smallest division
A		
B		
C		

Method and Results:

Ao Identffication of the common leboratory equipmentr

A. $\mathbf{p H}$ meter:

1-Standardize the PH meter by placing the electrode in a solution of known pH
(PH $4,7,9) \rightarrow$ Calibration.
2-Wash the electrode with distilled water and dry by tissue then put it into sample solution A then wash it again and place it in solution $\mathrm{B} \rightarrow$ Read pH .

Note: After use the electrode, you should storage it in distilled water and never be allowed to dry out. If the electrode get dry it will required reactivation.

Solution	pH value	Neutral, acidic or basic
Standard 4		
Standard 7		
Standard 9		
Sample A		
Sample B		

Method and Results:

4o Identification of the common leboratory equipmento

B. Spectrophotometer:

1- Adjust the spectrophotometer to zero using water as blank solution in the cuvette.
2-Read the absorbance of standard solution and the solution of unknown concentration at 280 nm . 3-Read your result.

Solution	Absorbance at 280 mm
BSA standard solution $(0.5 \mathrm{~g} / 100 \mathrm{ml})$	
Solution of Unknown concentration	

Calculation:

$\mathrm{C}_{\text {standard }} \rightarrow \mathrm{A}_{\text {standard }}$ $\mathrm{C}_{\text {unknown }} \rightarrow \mathrm{A}_{\text {unknown }}$

$$
\mathrm{C}_{\text {unknown }}=\mathrm{C}_{\text {standard }} \mathrm{XA} \mathrm{~A}_{\text {unknown }}
$$

$\mathrm{A}_{\text {standard }}$

WVhere:

$\mathbf{C}_{\text {standard }}=$ concentration of standard solution, $\mathrm{C}_{\text {unknown }}=$ concentration of unknown solution, $\mathbf{A}_{\text {standard }}=$ Absorbance of standard solution, $\mathbf{A}_{\text {unknown }}=$ Absorbance of unknown solution.

Example:

Solution	Absorbance at 280 nm	$\mathrm{C}_{\text {unknown }}=\mathrm{C}$	$\mathrm{C}_{\text {standard }} \mathrm{X} \mathrm{A}_{\text {unknown }}$	
BSA standard solution ($0.5 \mathrm{~g} / 100 \mathrm{ml}$)	0.675		$\mathrm{A}_{\text {standard }}$	
Solution of Unknown concentration	1.2	So: $\quad \mathrm{C}_{\text {unknown }}=$	$=\underline{0.5 \mathrm{~g} / 100 \mathrm{ml} \times 1.2}$	$=0.889 \mathrm{~g} / 100 \mathrm{ml}$
			0.675	

Homework:

1- What is the smallest division for the following:

2- Measuring cylinder cannot be a substitute for the pipette or a burette, why?
3- What is the meaning of Calibration?
4- There are three different solution have pH values 3,7 and 10 :

- solution 1 is basic (T or F)
- solution 2 is neutral (T or F)
- solution 3 is acidic (T or F)

5- Why in the invisible range wavelength quartz cuvette is used?

