Choose the correct answer

	The SI units are:						
1	A) "kg" for mass, "atm" for pressure. B) "Pa" for pressure, "K" for temperature.						
	C) "°C" for temperature, "L" for volume. D) "s" for time, "mmHg" for pressure.						
	The number of atoms in 40.5 g of aluminum(Al) is:						
2	A) 2.5×10^{24} B) 1.8×10^{21} C) 9.0×10^{23} D) 6.6×10^{26}						
	The weight percentage of copper (Cu) in the compound CuFeS ₂ is:						
3	A) 25.48% B) 28.75% C) 34.62% D) 39.56%						
	5.0 g (H ₂) react with 5.0 g (CO) to give 5.5 g (CH ₃ OH), $2H_2 + CO \rightarrow CH_3OH$						
4	what is the percent yield of the product?						
	A) 11% B) 24% C) 79% D) 96%						
5	The concentration, in (mol/L), of a 100 g of NaNO ₃ in 1500 mL solution is:						
	A) 0.78 B) 0.078 C) 0.087 D) 0.87						
	If the concentration of CuSO ₄ solution is 52.7% by mass, the weight of solution that contains 75.4 g of CuSO ₄ is:						
6	A) 341 B) 314 C) 143 D) 431						
	The molecular formula of a compound contains 46.16% carbon, 5.17% hydrogen						
	and 48.67% fluorine with the molar mass 156.12 g/mol?						
7							
	A) $C_3H_4F_2$ B) $C_5H_{10}F_5$ C) $C_6H_8F_4$ D) $C_6H_6F_3$						
	When 1.00 mol of H ₂ reacts with 1.00 mol of O ₂ :						
	$2H_2 + O_2 \rightarrow 2H_2O$						
0	the final gas mixture will contain:						
	A) H_2 , H_2O , and O_2 B) only H_2 and H_2O						
8	C) only O_2 and H_2O D) only H_2 and O_2						

	Mass of NaN_3 needed to fill a 44.8 L car air bag with $N_{2(g)}$ at standard temperature						
	and pressure (STP) is:						
9	$2NaN_3(s) \rightarrow 2Na(s) + 3N_2(g)$						
	A) 56 g	B) 87 g		C) 130 g	D) 1.3 g		
	A sample of CO(g) gas was collected in a 2.0 L flask over water at 28°C and						
10	810 mmHg, the number of moles of CO in the flask is: if $P_{H_2O} = 28.3$ mmHg at						
	this temperature.						
	A) 0.380	B) 0.038		C) 0.308	D) 0.083		
	11) 0.300	B) 0.030		C) 0.300	2)0.003		
	A sample of N ₂ gas has a volume of 32.4 L at 20°C and 740 torr. If the sample is						
	heated to 120°C and its pressure is reduced to 620 torr.						
11	The final volume of N ₂ , (in L), becomes:						
	A) 70.3	B) 65.8		C) 60.7	D) 51.9		
		· · · · · · · · · · · · · · · · · · ·					
12	The constant "b" in "van der Waals" equation is related to:						
	A) The average speed of the gas molecules.						
	B) The volume of the gas molecules.						
	C) The attractive forces between the gas molecules.						
	D) The average kinetic energy of the gas molecules.						
	What is the molar mass (in g/mol) of a gas if its density(d) is 1.57 g/L at 298 K						
		iai mass (m g/mo)	i) or a gas	ii its delisity(a) 15 1.57 g/L at 290 K		
13	and 1.2 atm?	D) 44		(0)22	D) 20		
	A) 71	B) 44		(C) 82	D) 28		
	What is the root-mean-square speed (in m/s) of neon (Ne) at 300 K?						
14	A) 450	B) 498		C) 685	D) 609		
	Which of the following gases effuses about two times faster than SO ₂ (g)?						
15	A) CH ₄	B) O ₂		C) CO ₂	D) CO		