Chapter 6: Chemical Equilibrium

1. Given the two reactions shown with their equilibrium constants,

\[\text{PCl}_3(g) + \text{Cl}_2(g) \rightleftharpoons \text{PCl}_5(g) \quad K_1 \]
\[2 \text{NO}(g) + \text{Cl}_2(g) \rightleftharpoons 2 \text{NOCl}(g) \quad K_2 \]

What is the equilibrium constant for the reaction,

\[\text{PCl}_5(g) + 2 \text{NO}(g) \rightleftharpoons \text{PCl}_3(g) + 2 \text{NOCl}(g) \]

a. \(K_1K_2 \)

b. \(K_2/K_1 \) (flip first equation and added to the second equation)

c. \(K_1/K_2 \)

d. \((K_1K_2)^{-1} \)

e. \(K_2-K_1 \)

2. The equilibrium constant for the reaction, \(\text{H}_2(g) + \text{I}_2(g) \rightleftharpoons 2 \text{HI}(g) \) is 54.9 at 699.0 K. What is the equilibrium constant for \(4 \text{HI}(g) \rightleftharpoons 2 \text{H}_2(g) + 2 \text{I}_2(g) \) under the same conditions?

a. 109.8

b. 0.00911

* c. 0.000332 \(K_2 = (1/K_1)^2 = (1/54.9)^2 = 3.32 \times 10^{-4} = 0.000332 \)

d. -109.8

e. 0.0182

3. Using this data,

\[2 \text{NO}(g) + \text{Cl}_2(g) \rightleftharpoons 2 \text{NOCl}(g) \quad K_{c1} = 3.20 \times 10^{-3} \]
\[2 \text{NO}_2(g) \rightleftharpoons 2 \text{NO}(g) + \text{O}_2(g) \quad K_{c2} = 15.5 \]

Calculate a value for \(K_c \) for the reaction,

\[\text{NOCl}(g) + \frac{1}{2} \text{O}_2(g) \rightleftharpoons \text{NO}_2(g) + \frac{1}{2} \text{Cl}_2(g) \]

a. 2.06 \times 10^{-4}

b. 4.84 \times 10^{-3}

c. 0.223

* d. 4.49 \(K = (1/K_{c1})^{1/2} \cdot (1/K_{c2})^{1/2} = (1/3.20 \times 10^{-3})^{1/2} \times (1/15.5)^{1/2} = 4.49 \)

e. 20.2

4. For which one of the following reactions is \(K_p \) equal to \(K_c \)? when \(\Delta n \text{(gases)} = 0 \)

a. \(4\text{NH}_3(g) + 5\text{O}_2(g) \rightleftharpoons 4\text{NO}(g) + 6\text{H}_2\text{O}(g) \)

b. \(\text{C(s)} + \text{CO}_2(g) \rightleftharpoons 2\text{CO}(g) \)

* c. \(6\text{CO}_2(g) + 6\text{H}_2\text{O}(l) \rightleftharpoons \text{C}_6\text{H}_12\text{O}_6(s) + 6\text{O}_2(g) \)

d. \(\text{CaCO}_3(s) \rightleftharpoons \text{CaO(s)} + \text{CO}_2(g) \)

e. \(\text{H}_2\text{O}(g) + \text{C(s)} \rightleftharpoons \text{H}_2(g) + \text{CO(g)} \)
5. For the reaction, \(\text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{SO}_3(g) \), at 900.0 K the equilibrium constant, \(K_c \), has a value of 13.0. Calculate the value of \(K_p \) at the same temperature.

 a. \(97.3 \times 10^3 \)
 * b. \(0.176 \)
 c. \(960 \)
 d. \(0.00174 \)
 e. \(0.077 \)

6. Write the mass action expression for the following reaction:
\[4\text{Cr}(s) + 3\text{CCl}_4(g) \rightleftharpoons 4\text{CrCl}_3(g) + 4\text{C}(s) \]

 a. \(K_c = \frac{[\text{CrCl}_3]^4}{[\text{Cr}]^4[\text{CCl}_4]^3} \)
 b. \(K_c = \frac{[\text{CrCl}_3]^4}{[\text{Cr}]^4[\text{CCl}_4]^3} \)
 * c. \(K_c = \frac{[\text{CrCl}_3]^4[\text{C}]^4}{[\text{CCl}_4]^3} \)
 d. \(K_c = \frac{[\text{CrCl}_3]}{[\text{CCl}_4]} \)
 e. \(K_c = [\text{CrCl}_3]^4 + [\text{CCl}_4]^3 \)

7. Consider the following system, which is at equilibrium,
\[\text{CO}(g) + 3\text{H}_2(g) \rightleftharpoons \text{CH}_4(g) + \text{H}_2\text{O}(g). \]
 The result of removing some \(\text{CH}_4(g) \) and \(\text{H}_2\text{O}(g) \) from the system is that
 * a. more \(\text{CH}_4(g) \) and \(\text{H}_2\text{O}(g) \) are produced to replace that which is removed
 b. \(K_c \) decreases
 c. more \(\text{CO}(g) \) is produced
 d. more \(\text{H}_2\text{O}(g) \) is consumed to restore the equilibrium
 e. more \(\text{CH}_4(g) \) is consumed to restore the equilibrium

8. The following reactions have equilibrium values all measured at 500 K. Arrange them in order of increasing tendency to proceed to completion (least completion \(\rightarrow \) greatest completion).

 1) \(2\text{NOCl} \rightleftharpoons 2\text{NO} + \text{Cl}_2 \) \(K_p = 1.7 \times 10^3 \)
 2) \(\text{N}_2\text{O}_4 \rightleftharpoons 2\text{NO}_2 \) \(K_p = 1.5 \times 10^3 \)
 3) \(2\text{SO}_3 \rightleftharpoons 2\text{SO}_2 + \text{O}_2 \) \(K_p = 1.3 \times 10^3 \)
 4) \(2\text{NO}_2 \rightleftharpoons 2\text{NO} + \text{O}_2 \) \(K_p = 5.9 \times 10^3 \)
 a. \(2 < 1 < 3 < 4 \)
 b. \(4 < 3 < 1 < 2 \)
c. $3 < 1 < 4 < 2$

* d. $3 < 4 < 1 < 2$ from smaller no to a larger one of K_c

e. $4 < 3 < 2 < 1$

9. The reaction, $Q + 2 \text{SO}_3(g) \rightleftharpoons 2 \text{SO}_2(g) + \text{O}_2(g)$ is endothermic. Predict what will happen if the temperature is increased.

a. K_c remains the same
b. K_c decreases
c. the pressure decreases
d. more $\text{SO}_3(g)$ is produced
* e. K_c increases

10. Consider the following system, which is at equilibrium,

$$ \text{CO}(g) + 3\text{H}_2(g) \rightleftharpoons \text{CH}_4(g) + \text{H}_2\text{O}(g). $$

The result of removing some $\text{CH}_4(g)$ and $\text{H}_2\text{O}(g)$ from the system is that

* a. more $\text{CH}_4(g)$ and $\text{H}_2\text{O}(g)$ are produced to replace that which is removed
b. K_c decreases
c. more $\text{CO}(g)$ is produced
d. more $\text{H}_2\text{O}(g)$ is consumed to restore the equilibrium
e. more $\text{CH}_4(g)$ is consumed to restore the equilibrium

11. The system, $2\text{H}_2\text{O}(g) + 2\text{Cl}_2(g) \rightleftharpoons 4\text{HCl}(g) + \text{O}_2(g)$, has a value of 8.00 for K_p. Initially, the partial pressures of $\text{H}_2\text{O}(g)$ and $\text{Cl}_2(g)$ are set at 0.100 atm, while those of $\text{HCl}(g)$ and $\text{O}_2(g)$ are set at 0.250 atm. Which statement below is true?

$Q = (0.250)^4 / (0.1)^4 = 39.06, \ Q > K, Q$ must decrease, will shift to left side

a. $Q_p > K_p$ and the reaction proceeds to the right to reach equilibrium.
b. $Q_p < K_p$ and the reaction proceeds to the left to reach equilibrium.
c. The reaction system is already at equilibrium.
* d. $Q_p > K_p$ and the reaction proceeds to the left to reach equilibrium.
e. $Q_p < K_p$ and the reaction proceeds to the right to reach equilibrium.

12. A study of the system, $4\text{NH}_3(g) + 7\text{O}_2(g) \rightleftharpoons 2\text{N}_2\text{O}_4(g) + 6\text{H}_2\text{O}(g)$, was carried out. A system was prepared with $[\text{NH}_3] = [\text{O}_2] = 3.60 \text{ M}$ as the only components initially. At equilibrium, $[\text{N}_2\text{O}_4]$ is 0.60 M. Calculate the equilibrium concentration of O_2.

a. 3.00 M
b. 2.40 M
* c. 1.50 M
d. 2.10 M
e. 3.30 M
\[4\text{NH}_3(g) + 7\text{O}_2(g) \rightleftharpoons 2\text{N}_2\text{O}_4(g) + 6\text{H}_2\text{O}(g)\]

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>3.6</th>
<th>3.6</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4x</td>
<td>7x</td>
<td>2x</td>
<td>6x</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3.6-4x</td>
<td>3.6-7x</td>
<td>2x</td>
<td>6x</td>
<td></td>
</tr>
</tbody>
</table>

\[2\times=0.6 \quad x=0.3 \quad 3.6-7(0.3)=1.5 \text{ M} \]

13. For the reaction system, \(2\text{SO}_2(g) + \text{O}_2(g) \rightleftharpoons 2\text{SO}_3(g)\), the equilibrium concentrations are: \(\text{SO}_3\): 0.120M, \(\text{SO}_2\): 0.860M, \(\text{O}_2\): 0.330M. Calculate the value of \(K_c\) for this reaction.

\[
K_c = \frac{[\text{SO}_3]^2}{[\text{SO}_2]^2[\text{O}_2]} = \frac{(0.120)^2}{(0.860)^2(0.330)} = 0.05899
\]

a. 1.31
b. 2.51
c. 0.423
d. 0.872
* e. 0.0590

14. At 1500 °C the system, \(2\text{NO}(g) \rightleftharpoons \text{N}_2(g) + \text{O}_2(g)\), was allowed to come to equilibrium. The equilibrium concentrations were: \(\text{NO}(g)\) = 0.00035 M, \(\text{N}_2(g)\) = 0.040 M, and \(\text{O}_2(g)\) = 0.040 M. What is the value of \(K_c\) for the system at this temperature?

\[
K_c = \frac{[\text{N}_2][\text{O}_2]}{[\text{NO}]^2} = \frac{(0.040)(0.040)}{(0.00035)^2} = 13061 = 1.3 \times 10^4
\]

a. \(1.5 \times 10^{-6}\)
b. \(7.7 \times 10^{-5}\)
c. \(2.2 \times 10^{-1}\)
d. 4.6
* e. \(1.3 \times 10^4\)

15. A chemical system is considered to have reached equilibrium when

a. the rate of consumption of each of the product species by the reverse reaction is equal to the rate of production of each of the reactant species by the reverse reaction.
b. the sum of the concentrations of each of the reactant species is equal to the sum of the concentrations of each of the product species.
* c. the rate of production of each of the product species is equal to the rate of consumption of each of the product species by the reverse reaction.
d. the rate of production of each of the product species is equal to the rate of consumption of each of the reactant species by the reverse reaction.
e. the rate of production of each of the product species by the forward reaction is equal to the rate of production of each of the reactant species by the reverse reaction.
16. The system, $2\text{NO}(g) \rightleftharpoons \text{N}_2(g) + \text{O}_2(g)$ was allowed to come to equilibrium at 1500 °C. The equilibrium concentrations were: $\text{NO}(g) = 0.00035 \text{ M}$, $\text{N}_2(g) = 0.040 \text{ M}$, and $\text{O}_2(g) = 0.040 \text{ M}$. What is the value of K_p for the system at this temperature?

$$K_c = \frac{[\text{N}_2][\text{O}_2]}{[\text{NO}]} = \frac{(0.040)(0.040)}{(0.00035)^2} = 13061 = 1.3 \times 10^4$$

$$K_p = K_c (RT)^{\Delta n} = 1.3 \times 10^4 (0.082 \times 1773)^1$$

then $K_p = K_c = 1.3 \times 10^4$

a. 2.2×10^{-1}

* b. $1.3 \times 10^{+4}$

c. $1.9 \times 10^{+6}$

d. 7.7

e. 1.5

17. A study of the system, $4 \text{NH}_3(g) + 7 \text{O}_2(g) \rightleftharpoons 2 \text{N}_2\text{O}_4(g) + 6 \text{H}_2\text{O}(g)$, was carried out. A system was prepared with $[\text{NH}_3] = [\text{O}_2] = 3.60 \text{ M}$ as the only components initially. At equilibrium, $[\text{N}_2\text{O}_4]$ is 0.60 M. Calculate the value of the equilibrium constant, K_c, for the reaction.

<table>
<thead>
<tr>
<th>I</th>
<th>3.6</th>
<th>3.6</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>4x</td>
<td>7x</td>
<td>2x</td>
<td>6x</td>
</tr>
<tr>
<td>E</td>
<td>3.6-4x</td>
<td>3.6-7x</td>
<td>2x</td>
<td>6x</td>
</tr>
<tr>
<td>2x=0.6</td>
<td>x=0.3</td>
<td>3.6-4(0.3)</td>
<td>3.6-7(0.3)</td>
<td>0.6</td>
</tr>
</tbody>
</table>

$$K = \frac{(1.8)^6 (0.6)^2}{(1.5)^7 (2.4)^4} \quad K = 0.0216$$

a. 8.1

b. 0.0000093

c. 0.30

* d. 0.022

e. 3.3

18. Given the reaction, $2\text{NO}(g) + \text{O}_2(g) \rightleftharpoons 2\text{NO}_2(g) + \text{Q}$, for which the enthalpy of reaction is -118.9 kJ. Which one of the following actions will cause an increase in the equilibrium concentration of $\text{NO}(g)$ in a closed reaction chamber?

Will shift to the left by increasing T

a. adding more $\text{O}_2(g)$ through an injection nozzle

* b. increasing the temperature of the system

c. removing the $\text{NO}_2(g)$ from the system

d. increasing the pressure of the system while temperature is kept constant

e. adding a catalyst