

Fundamentals of Organic Chemistry CHEM 109

For Students of Health Colleges

Credit hrs.: (2+1)

King Saud University

College of Science, Chemistry Department

Learning Objectives

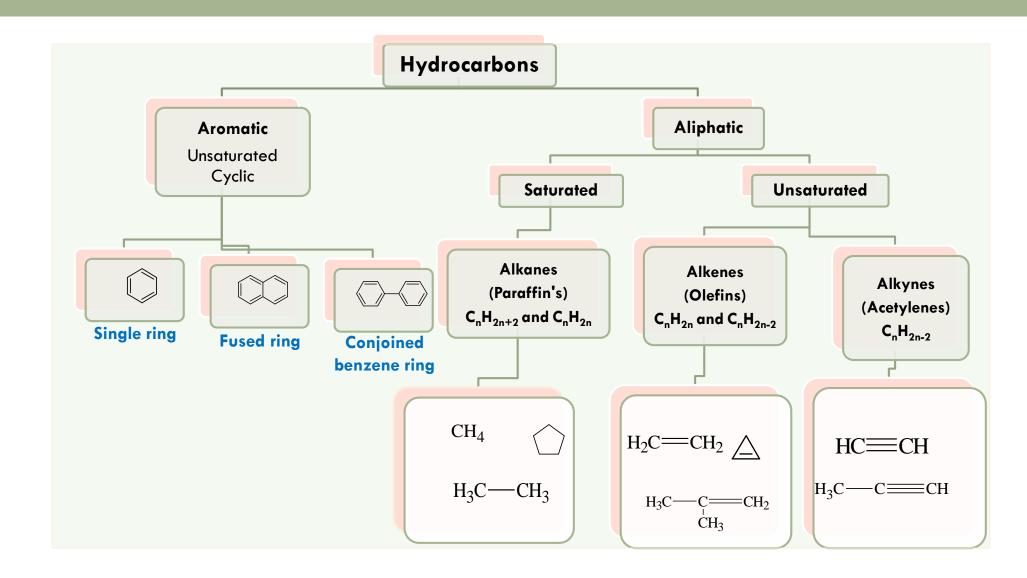
At the end of this chapter, students will able to:

- Identify the different types of aliphatic hydrocarbons (alkanes, cycloalkanes, alkenes, cycloalkenes and alkynes).
- Recognize the basic properties (structure, physical and chemical properties) of alkanes, alkenes and alkynes.
- Identify the structure of a hydrocarbon from its IUPAC and common name.
- Identify the name from the structure of hydrocarbons
- Explain the type of isomer in organic compounds and draw the different isomer structures of the compound.
- Know the different methods for the synthesis of aliphatic hydrocarbons.
- Identify the general reactions of aliphatic hydrocarbons.

Hydrocarbons

- Hydrocarbons are Organic Compounds, which contain only the two elements carbon and hydrogen.
- Aliphatic hydrocarbons are subdivided into:
 - Saturated hydrocarbons
 - Alkanes; C_nH_{2n+2} (contain carbon-carbon single bond)
 - Cycloalkanes: C_nH_{2n} (contain carbon-carbon single bond in a single ring)

Alkanes and cycloalkanes are so similar that many of their properties can be considered side by side.


Unsaturated hydrocarbons

■ Alkenes: C_nH_{2n} (contain carbon-carbon double bond)

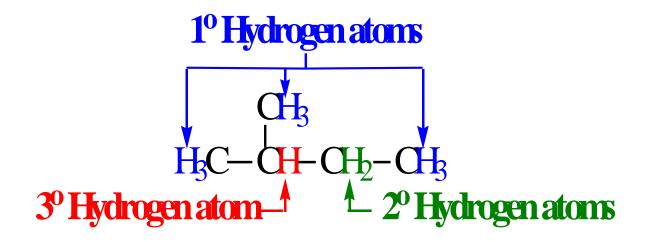
■ Alkynes: $C_n H_{2n-2}$ (contain carbon-carbon triple bond)

Hydrocarbons

Saturated Hydrocarbons 1. Alkanes

General formula is C_nH_{2n+2}

- In alkanes, the four sp³ orbitals of carbon repel each other into a tetrahedral arrangement with bond angles of 109.5° like in CH₄.
- Each sp³ orbital in carbon overlaps with the 1s orbital of a hydrogen atom to form a C-H bond.


Names, Molecular formulas and Number of Isomers of the first ten Alkanes

Name	Number of carbons	Molecular formula	Structural formula	Number of structural isomers
methane	1	CH ₄	CH ₄	1
ethane	2	C ₂ H ₆	CH ₃ CH ₃	1
propane	3	C ₃ H ₈	CH ₃ CH ₂ CH ₃	1
butane	4	C ₄ H ₁₀	CH ₃ CH ₂ CH ₂ CH ₃	2
pentane	5	C ₅ H ₁₂	CH ₃ (CH ₂) ₃ CH ₃	3
hexane	6	C ₆ H ₁₄	CH ₃ (CH ₂) ₄ CH ₃	5
heptane	7	C ₇ H ₁₆	CH ₃ (CH ₂) ₅ CH ₃	9
octane	8	C ₈ H ₁₈	CH ₃ (CH ₂) ₆ CH ₃	18
nonane	9	C ₉ H ₂₀	CH ₃ (CH ₂) ₇ CH ₃	35
decane	10	$C_{10}H_{22}$	CH ₃ (CH ₂) ₈ CH ₃	75

Saturated Hydrocarbons الملك سعود 1. Alkanes University

Classes of Carbons and Hydrogen

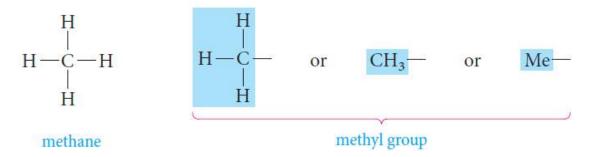
- \circ **A primary** (1°) carbon is one that is bonded to only one other carbon.
- A secondary (2°) carbon is one that is bonded to two other carbons.
- A tertiary (3°) carbon is one that is bonded to three other carbons.

 Hydrogens are also referred to as 1°, 2°, or 3° according to the type of carbon they are bonded to.

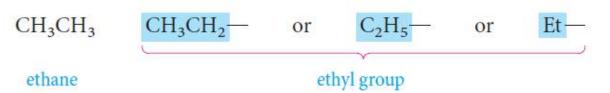
7

Alkyl Group

- An alkyl group is formed by loss of a hydrogen atom from the corresponding alkane.
- \circ General formula C_nH_{2n+1} .
- The letter R is used as a general symbol for an alkyl group.
- \circ An alkyl group is named by replacing the suffix —ane of the parent alkane by —y/.

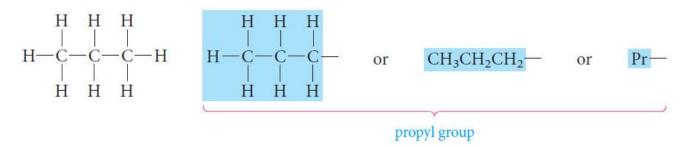

i.e.
$$Alkane - ane + yl = Alkyl$$

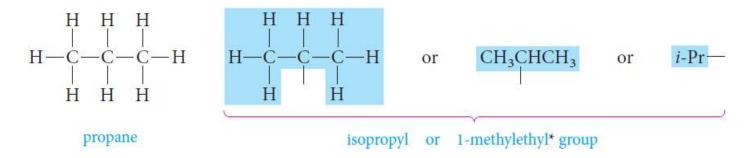
Alkyl Group



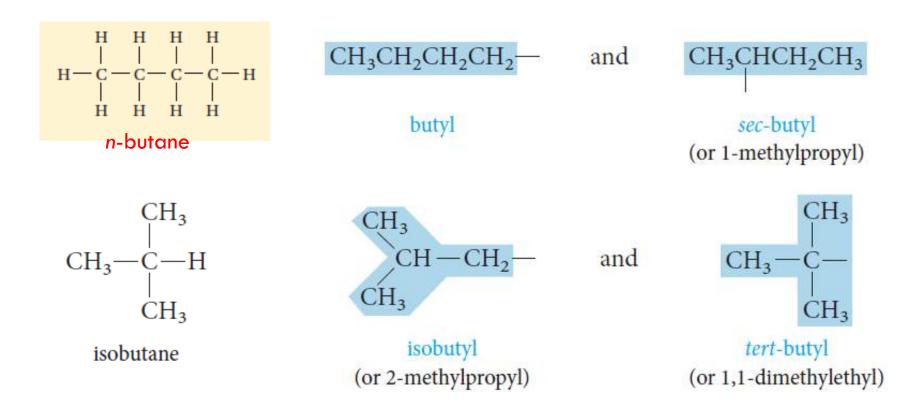
Examples:

Derived from methane by removing one of the hydrogens, a one-carbon substituent is called a methyl group.


Thus the two-carbon alkyl group is called the ethyl group, from ethane.


Alkyl Group

- When we come to propane, there are two possible alkyl groups, depending on which type of hydrogen is removed.
 - If a terminal hydrogen is removed, the group is called a propyl group.


• If a hydrogen is removed from the central carbon atom, we get a different isomeric propyl group, called the **isopropyl group**.

Alkyl Group

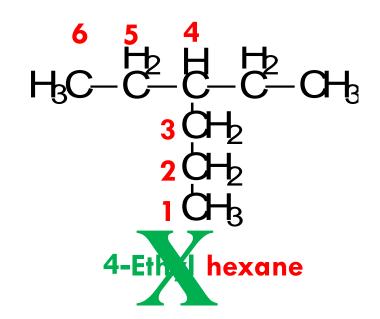
- For four-carbon alkyl group, there are four different butyl groups.
 - The butyl and sec-butyl groups are based on n-butane.
 - The isobutyl and tert-butyl groups come from isobutane.

Nomenclature; IUPAC Rules

- The older unsystematic names, (<u>Common names</u>).
- The <u>IUPAC names</u>.

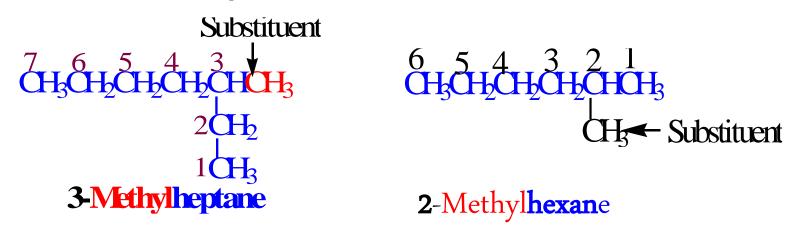
International Union of Pure & Applied Chemistry

The IUPAC Rules


1) Select the parent structure; the longest continuous chain

The longest continuous chain is not necessarily straight.

Nomenclature; IUPAC Rules

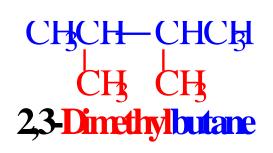

2) Number the carbons in the parent chain

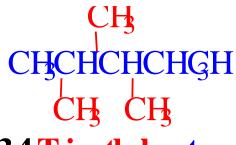
starting from the end which gives the lowest number for the substituent

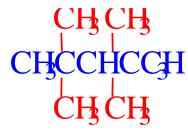
Nomenclature; IUPAC Rules

2) Number the carbons in the parent chain

To name the compound;


- 1) Determine The position of the substituent on the parent carbon chain by a number.
 - 2) The number is followed by a hyphen (-)
 - 3) The combined name of the substituent (ethyl).
 - 4) The parent carbon chain (hexane), So the full name will be: 3 Ethyl hexane

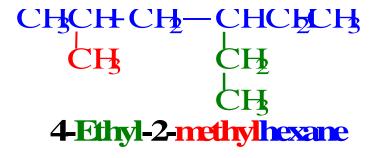

Nomenclature; IUPAC Rules


3) If the same alkyl substituent occurs more than once on the parent carbon chain, the prefixes di-, tri-, tetra-, penta-, and so on

are used to indicate two, three, four, five, and so on.

2,2,4- Tri methylpentane

2,2,4,4 Tetramethylpentane

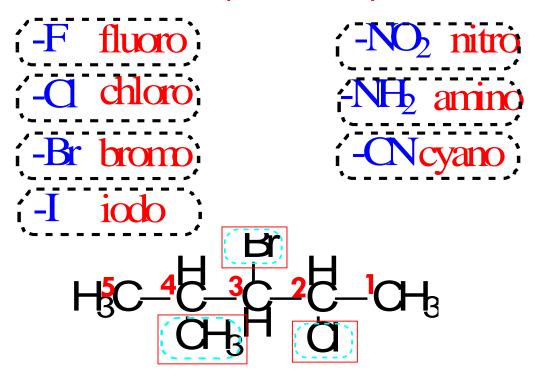

Nomenclature; IUPAC Rules

4) If different alkyl substituents are attached on the parent carbon chain, they are named in order of alphabetical order.

3,3-Diethyl - 4-methyl - 5 - propyl octane

Note that

- Each substituent is given a number corresponding to its location on the longest chain.
- The substituent groups are listed alphabetically.


Nomenclature; IUPAC Rules

5) When two substituent are present on the same carbon, use the number twice.

6) When two chains of equal length compete for selection as the parent chain, choose the chain with the greater number of substituents.

Nomenclature; IUPAC Rules

7) If substituents other than alky groups are also presents on the parent carbon chain; all substituents are named alphabetically.

3-bromo -2-chloro -4-methyl pentane

2-chloro 3-bromo 4- methyl

Nomenclature; IUPAC Rules

Examples

Common name: IUPAC name:

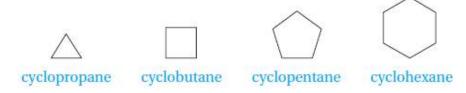
CH₃CH₂CH₂CH₂CH₃

Pentane

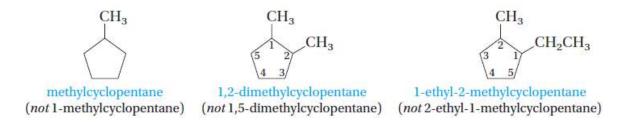
$$H_3C$$
 C
 CH_3
 CH
 CH_3
 CH_3

Isopentane

2-Methylbutane



Neopentane


2,2-Dimethylpropane

Nomenclature of Cycloalkanes

- \circ $\mathsf{Cycloalkanes}$ are saturated hydrocarbons that have at least one ring of carbon atoms.
- Cycloalkanes are named by placing the prefix cyclo- before the alkane name that corresponds to the number of carbon atoms in the ring.

- o If only one substituent is present, no number is needed to locate it.
- If there are several substituents, numbers are required.
 With different substituents, the one with highest alphabetic priority is located at carbon 1.

Nomenclature of Cycloalkanes

- \circ If there are more than two substituents on the ring, they are cited in alphabetical order.
- The substituent given the number 1 position is the one that results in a second substituent getting as low a number as possible.
- o If two substituents have the same low number, the ring is numbered in the direction that gives the third substituent the lowest possible number.
- Examples,

Aliphatic Hydrocarbons

Physical Properties of Alkanes, Alkenes and Alkynes

Those properties that can be observed without the compound undergoing a chemical reaction such as its physical states, density, color, Boiling and melting points and solubility.

A. Physical States

C1 (C2) to C4 are gases,

C5 to C17 are liquids,

C18 and larger alkanes are wax -like solids.

B. Solubility

- Alkanes, Alkenes and Alkynes are nonpolar compounds.
- Their solubility "Like dissolve like"
- Alkanes, Alkenes and Alkynes are soluble in the nonpolar solvents;
 carbon tetrachloride, CCl₄ and benzene,
- Alkanes, Alkenes and Alkynes are insoluble in polar solvents like water.

Physical Properties of Alkanes, Alkenes and Alkynes

Boiling Points & Melting Points

Effect of Molecular Weight

The boiling points and melting points of normal hydrocarbons increase with increasing molecular weight.

As the molecules become larger, there are more forces of attraction between them, and more energy is needed.

Effect of Branching

- Among isomers, straight chain compound has the highest boiling point.
- The greater the number of branches, the lower the boiling point.

Name	Formula	Boiling point, °C
pentane	CH ₃ CH ₂ CH ₂ CH ₂ CH ₃	36
2-methylbutane (isopentane)	CH ₃ CHCH ₂ CH ₃ CH ₃	28
2,2-dimethyl- propane	CH ₃	10
(neopentane)	$CH_3 - C - CH_3$ CH_3	

Preparation of Alkanes

1. Hydrogenation of unsaturated hydrocarbon:

$$H_3C \xrightarrow{H} CH_2 \xrightarrow{H_2} H_3C \xrightarrow{H_2} CH_3$$
Propene

 $H_3C \xrightarrow{P} CH_2 \xrightarrow{P} H_3C \xrightarrow{P} CH_3$
Propene

 $H_3C \xrightarrow{P} CH_2 \xrightarrow{P} H_3C \xrightarrow{P} CH_3$
Propene

2. Hydrolysis of Grignard reagent

3. Reduction of Alkyl halides By lithium dialkyl cuprate

Reactions of Alkanes

Saturated hydrocarbons undergo very few reactions, so they are called Paraffinic hydrocarbons. (Latin *parum*, little; affinis, affinity)

Combustion

$$-\overset{\mathbf{H}}{\mathbf{C}}$$
 + $\overset{heat}{\mathbf{O}}$ + $\overset{heat}{\mathbf{O}}$ + $\overset{h}{\mathbf{H}}$ O + heat An alkane

Halogenation

The halogenation of an alkane appears to be a simple free radical substitution in which a C-H bond is broken and a new C-X bond is formed

RH +
$$X_2$$
 Heat X_2 RX + HX X = Cl or Br or UV light Alkyl halide

Reactivity X_2 : $Cl_2 > Br_2$
H: $3^0 > 2^0 > 1^0 > CH_3$ -H

Reactions of Alkanes

A. Halogenation

Substitution reaction of alkanes,

i.e. replacement of hydrogen by halogen, usually chlorine or bromine, giving alkyl chloride or alkyl bromide.

Flourine reacts explosively with alkanes
 It is unsuitable reagent for the preparation of the alkyl flourides.

lodine is too unreactive
 It is not used in the halogentaion of alkanes.

Halogenation of alkanes take place at

high temperatures or under the influence of ultraviolet light

Reactions of Alkanes

A) Halogenation

Chlorination of an alkane usually gives a mixture of products

With longer chain alkanes, mixtures of products may be obtained even at the first step.
 For example, with propane,

Uses of Alkanes

Alkanes are unreactive compounds and mainly used as a source of energy;

Examples:

- Natural gas is composed mostly of methane, but it also contains small amounts of ethane, propane, butane, and pentane.
- Diesel itself is a mixture of hydrocarbons, ranging from $C_{10}H_{20}$, (decane) to $C_{15}H_{28}$.
- O Petroleum jelly (Vaseline) is petrolatum, a hydrocarbon, $C_{15}H_{15}N$ (1,1,2 Trimethylbenzeindole).
- Most petroleum jelly today is used as an ingredient in skin lotions and cosmetics.
- Paraffin wax (or petroleum wax) is a soft colorless solid, derived from petroleum, that consists of a
 mixture of hydrocarbon molecules containing between twenty and forty carbon atoms.
- Common applications for paraffin wax include lubrication, electrical insulation, and candles
- Cyclopropane is used as an anaesthetic
- General uses;
- Making organic compounds and used as Organic solvents

2. ALKENES

The Structure of Alkenes

- Alkenes are hydrocarbons that contain a carbon-carbon double bond.
- Alkenes are also Olefins.
- General formula is C_nH_{2n}
- \circ The simplest members of the Alkenes series are $C_2 \& C_3$

$$CH_2 = CH_2$$
 $H_3C - CH = CH_2$

Common name: Ethylene Propylene

IUPAC name: Ethene Propene

- Hybridization; sp²-hybridized orbitals
- \circ The angle between them is 120° and bond length C=C (1.34 Å).
- A trigonal planar.

Unsaturated Hydrocarbons 1. Alkenes duniversity

Nomenclature; Common Names

 The simplest members of the alkene and alkyne series are frequently referred to by their older common names, ethylene, acetylene, and propylene.

$$CH_2 = CH_2$$
 $HC = CH$ $CH_3CH = CH_2$ ethylene acetylene propylene (ethene) (ethyne) (propene)

- Two important groups also have common names; They are the vinyl and allyl groups.
- These groups are used in common names.

Nomenclature; IUPAC Rules

The IUPAC rules for naming alkenes are similar to those for alkanes, but a few rules must be added for naming and locating the multiple bonds.

- 1. The ending -ene is used to designate a carbon-carbon double bond.
- 2. Select the longest chain that includes both carbons of the double bond.

3. Number the chain from the end nearest the double bond so that the carbon atoms in that bond have the lowest possible numbers.

$$\overset{1}{C} - \overset{2}{C} = \overset{3}{C} - \overset{4}{C} - \overset{5}{C}$$
 not $\overset{5}{C} - \overset{4}{C} = \overset{3}{C} - \overset{2}{C} - \overset{1}{C}$

Nomenclature; IUPAC Rules

If the multiple bond is equidistant from both ends of the chain, number the chain from the end nearest the first branch point.

4. Indicate the position of the multiple bond using the lower numbered carbon atom of that bond.

Nomenclature; IUPAC Rules

NOTES

The root of the name (eth- or prop-) tells us the number of carbons, and the ending (-ane, -ene, or -yne) tells us whether the bonds are single, double, or triple.

No number is necessary in these cases, because in each instance, only one structure is possible.

CH₃CH₃
$$CH_2 = CH_2$$
 $EH_2 = CH_3$ $EH_3 = CH_3$ $EH_4 = CH_3$ $EH_5 = CH_4$ $EH_5 = CH_4$ $EH_5 = CH_3$ $EH_6 = CH_4$ $EH_6 = CH_4$ $EH_6 = CH_5$ $EH_6 = CH_5$ $EH_6 = CH_6$ EH_6 $EH_6 = CH_6$ EH_6 $EH_$

With four carbons, a number is necessary to locate the double bond.

$$\overset{1}{\text{CH}}_{2} = \overset{2}{\text{CHCH}}_{2} \overset{3}{\text{CH}}_{3} \overset{4}{\text{CH}}_{3} \overset{1}{\text{CH}}_{3} \overset{2}{\text{CHCH}}_{3}$$
1-butene

2-butene

Nomenclature; IUPAC Rules

Branches are named in the usual way.

the chain is numbered so that the double bond gets the lower number.)

Nomenclature; IUPAC Rules

Example: Write the structural formula of 4-Isopropyl-3,5-dimethyl-2-octene.

1) The parent carbon chain is an Octene.

The double bond is located between the 2nd and 3rd carbons.

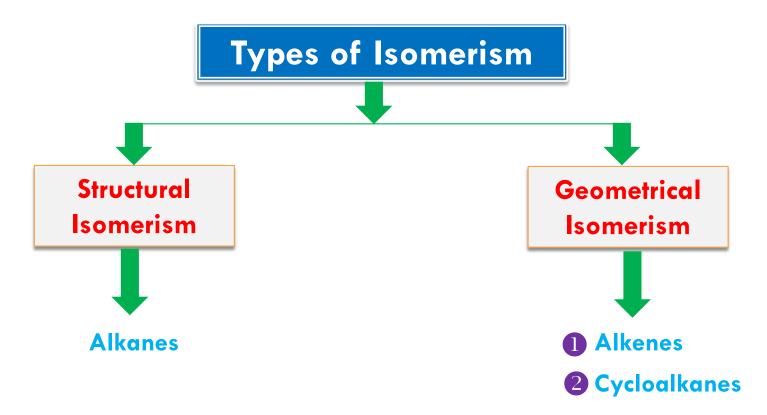
$$^{1}C - ^{2}C = ^{3}C - ^{4}C - ^{5}C - ^{6}C - ^{7}C - ^{8}C$$

2) Two methyl groups are attached on the parent carbon chain, one on carbon 3

and the other on carbon 5
$$CH_3$$
 CH_3 CH

3) An isopropyl group is attached on carbon 4.

4) Put the missing hydrogens to get the correct structure.


Unsaturated Hydrocarbons 1. Alkenes duriversity

Nomenclature of Cycloalkenes

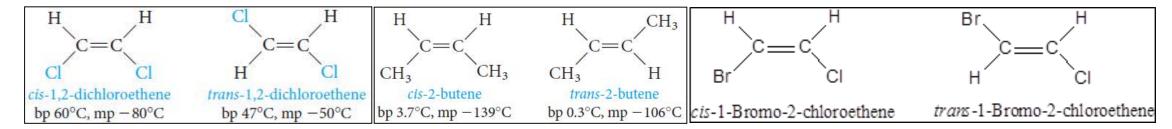
- We start numbering the ring with the carbons of the double bond.
- A number is not needed to denote the position of the functional group, because the ring is always numbered so that the double bond is between carbons 1 and 2.
- Put the lowest substituent number into the name not in the direction that gives the lowest sum of the substituent numbers.

- Isomers are different compounds with identical molecular formulas.
- The phenomenon is called isomerism.

Structural Isomerism in Alkanes

- Structural or constitutional isomers are isomers which differ in the sequence of atoms bonded to each other.
 - Examples:

Pentanes, C₅H₁₂



Geometric Isomerism in Alkenes

In alkenes, geometric isomerism is due to restricted rotation about the carbon - carbon double bond.

Geometric isomers

A) when W differs from X and Y from Z, Alkenes exist as geometric isomers

- cis isomer; when two similar groups are on the same side or same side of the double bond.
- *trans* isomer; when two similar groups are on the opposite direction or opposite sides of the double bond.
- They have different physical properties and can be separated by fractional crystallization or distillation.

Somerism ملک سعود الملک سعود King Saud University

Geometric Isomerism in Alkenes

B) If (W = X or Y = Z), geometric isomerism is not possible.

H
$$CH_2CH_3$$
 is identical to $C=C$ H $C=C$ H CH_2CH_3 CH_2CH_3 CH_3 CH_3

$$H_3C$$
 H_3C
 H_3C

Geometric Isomerism in Alkenes

For alkenes with four different substituent such as

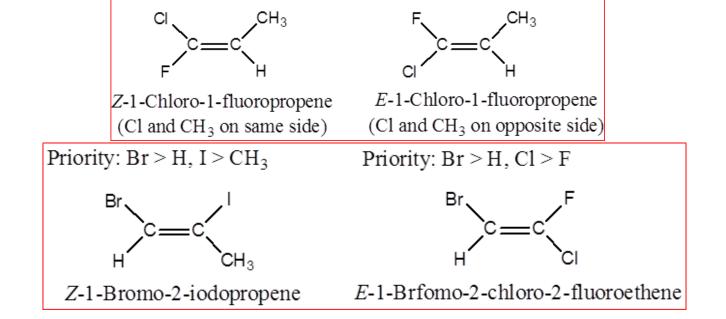
Another system, the E, Z system,

Basically, the E,Z system works as follows;

Arrange the groups on each carbon of the C=C bond in order of priority

The priority depends on atomic number:

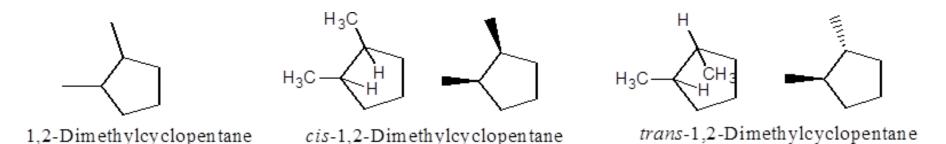
The higher the atomic number of the atom directly attached to the double-bonded carbon, the higher the priority.


Thus, in structure (I),
$$CI > F$$
, and $CH_3 > H$.

Geometric Isomerism in Alkenes

- If the two groups of higher priority are on the same side of the C=C plane,
 The isomer is labeled Z; (from the German zusammen, together).
- If the two groups of higher priority are on opposite sides of the C=C plane,
 The isomer is labeled E; (from the German entgegen, opposite).

Priority: Cl > F, $CH_3 > H$



Geometric Isomerism in Cycloalkanes

cis-trans Isomerism in Cycloalkanes

cis—trans isomerism (sometimes called geometric isomerism) is one kind of stereoisomerism.

Preparation of Unsaturated hydrocarbons

 Unsaturated hydrocarbons are prepared by <u>Elimination</u> of an atom or group of atoms from adjacent carbons to form <u>carbon-carbon double</u> or <u>triple bond</u>.

1) Dehydration of Alcohols

When an alcohol is heated in the presence of a mineral acid catalyst, It readily loses a molecule of water to give an alkene.

Preparation of Unsaturated hydrocarbons (Alkenes)

The acid catalysts most commonly used are mineral acids as sulfuric acid, H_2SO_4 , and phosphoric acid, H_3PO_4 .

 Removal of OH group and a proton from two adjacent carbon atoms using mineral acids such as HCI, H₂SO₄ and H3PO4

IUPAC name: 1-Propanol Propene Common name: *n*-Propyl alcohol Propylene

$$H$$
 H^+ H_2O

IUPAC name: Cyclohexanol Cy Common name: Cyclohexyl alcohol

Cyclohexene

1) Dehydration of Alcohols

Preparation of Unsaturated hydrocarbons (Alkenes)

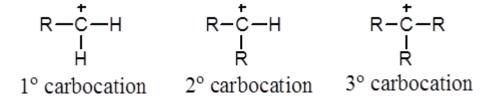
Which Alkene Predominates?; Saytzeff's Rule

The loss of water from adjacent carbon atoms, can give rise to more than one alkene.

Example: the dehydration of 2-butanol.

2-butene is the major (with two alkyl substituents attached to C=C)

Saytzeff's Rule applies


In every instance in which more than one Alkene can be formed

The major product is always the alkene with the most alkyl substituents attached on the double-bonded carbons.

1) Dehydration of Alcohols

Preparation of Unsaturated hydrocarbons (Alkenes)

Classes of Carbocations

according to the number of carbon atoms attached to the positively charged carbon.

The ease of formation and the stabilities of carbocations follow the order

Generally

- 1. The dehydration of alcohols requires an acid catalyst.
- 2. The predominant alkene formed follows Saytzeffs rule.
- 3. The reaction proceeds via a carbocation intermediate.
- 4. The stabilities of carbocations and the ease of dehydration of alcohols follows the order $3^{\circ} > 2^{\circ} > 1^{\circ}$.

Preparation of Unsaturated hydrocarbons (Alkenes)

2) Dehydrohalogenation of Alkyl Halides

Alkenes can also be prepared under alkaline conditions.

heating an alkyl halide with a solution of KOH or NaOH in alcohol, yields an alkene.

3) Dehalogenation of Vicinal Dibromides

Reactions of Unsaturated hydrocarbons with the state of t

(1) Electrophilic Addition Reactions

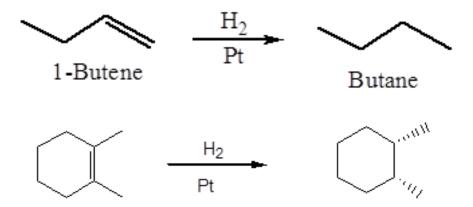
$$C = C + A - B \longrightarrow -C - C - C - A B$$

Addition of Symmetric and Unsymmetric Reagents to symmetric Alkenes.

- 1. Addition of Hydrogen: Catalytic Hydrogenation
- 2. Addition of Halogens: Halogenation

Addition of Unsymmetric Reagents to Unsymmetric Alkenes; Markovnikov's Rule.

- 1. Addition of Hydrogen Halides
- 2. Addition of Sulfuric Acid
- 3. Addition of Water: Hydration
- 4. Addition of HOX: Halohydrin Formation


(2) Oxidation Reactions

- 1. Ozonolysis
- 2. Oxidation Using KMnO₄

Reactions of Unsaturated hydrocarbons (Alkenes)

1. Addition of Hydrogen: Hydrogenation

Addition of a mole of hydrogen to carbon-carbon double bond of Alkenes in the presence of suitable catalysts to give an Alkane.

1,2-Dimethylcyclohexene

cis-1,2-Dimethylcyclohexane

Reactions of Unsaturated hydrocarbons (Alkenes)

2. Addition of Halogen: Halogenation

When an **alkene** is treated at room temperature with a solution of bromine or chlorine in carbon tetrachloride to give the corresponding vicinal dihalide (two halogens attached to adjacent carbons)

$$CH_{3}CH = CHCH_{3} + Cl_{2} \longrightarrow CH_{3}CH - CHCH_{3}$$

$$Cl \quad Cl$$
2-butene
2,3-dichlorobutane

1,2-Dimethyl-cyclohexene *trans*-1,2-Dibromo-1,2-dimethyl-cyclohexane

Reactions of Unsaturated hydrocarbons (Alkenes)

3. Addition of Acids

A variety of acids add to the double bond of alkenes.

The hydrogen ion (or proton) adds to one carbon of the double bond, and the remainder of the acid becomes connected to the other carbon.

$$C = C + H - A \longrightarrow -C - C - C - H A$$

 Acids that add in this way are the hydrogen halides (H-F, H-Cl, H-Br, H-I), and water (H-OH).

Reactions of Unsaturated hydrocarbons (Alkenes)

- Any electron-deficient species is called an electrophile.
- Any electron-rich species is called a nucleophile.

Examples of Electrophile:

- i) Positive reagents: protons (H^+), alkyl group R^+ , nitronium ion (NO_2^+), etc....
- ii) Neutral reagents having positively polarized centers: HCl, bromine (because it can be polarized so that one end is positive).
- iii) Lewis acids: molecules or ions that can accept an electron pair \Rightarrow BF₃ and AlCl₃.

Examples of Nucleophile:

a)Negative ions

e.g. HO: Hydroxide ion, HS: Hydrosulphide ion, RO: Alkoxide ions,

: N=C: Cyanide ion, : X: Halide ions, ...etc.

b) Neutral molecules

Reactions of Unsaturated hydrocarbons (Alkenes)

3. Addition of Acids

- The addition of H—A to an alkene is believed to be a two-step process.
 - Step 1. The hydrogen ion (the electrophile) attacks the Π -electrons of the alkene, forming a C—H bond and a carbocation.

Step 2. The negatively charged species A: - (a nucleophile) attacks the carbocation and forms a new C—A bond.

 \circ The attack by an electrophilic reagent on the Π -electrons, falls in a general category called **electrophilic addition reactions**.

Reactions of Unsaturated hydrocarbons (Alkenes)

3.1. Addition of Hydrogen Halide

Alkenes react with hydrogen chloride, HC1, hydrogen bromide, HBr and hydrogen iodide, HI, to form alkyl halides, RX.

General equation

Examples;

Reactions of Unsaturated hydrocarbons (Alkenes)

- Reagents and alkenes can be classified as either symmetric or unsymmetric with respect to addition reactions.
 - \triangleright If a reagent and/or an alkene is symmetric, only one addition product is possible.
 - > But if both the reagent and the alkene are unsymmetric, two products are, in principle, possible.

Symmetry with Regard to Addition Reactions		
	Symmetric	Unsymmetric
Reagents	Br + Br	H + Br
	Cl —Cl	н—он
	н-н	H—OSO ₃ H
Alkenes	$CH_2 = CH_2$	$CH_3CH = CH_2$
	\(\)	CH ₃
	mirror plane	not a mirror plane

Reactions of Unsaturated hydrocarbons (Alkenes)

Markovnikov's Rule

In electrophilic addition of H—X to **Unsymmetrical Alkenes** the hydrogen of the hydrogen halide adds to the double-bonded carbon that bears the greater number of hydrogen atoms and the negative halide ion adds to the other double-bonded carbon.

$$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{3}\text{C}-\overset{\text{C}}{\text{C}}=\text{CH}_{2} \\ \text{H}_{3}\text{C}-\overset{\text{C}}{\text{C}}=\text{CH}_{2} \\ \text{H}_{3}\text{C}-\overset{\text{C}}{\text{C}}=\text{CH}_{2} \\ \text{CH}_{3} \\ \text{H}_{3}\text{C}-\overset{\text{C}}{\text{C}}=\text{CH}_{2} \\ \text{C}\text{H}_{3} \\ \text{C}-\overset{\text{C}}{\text{C}}=\text{CH}_{2} \\ \text{C}\text{H}_{3} \\ \text{C}-\overset{\text{C}}{\text{C}}=\text{C}\text{H}_{2} \\ \text{C}-\overset{\text{C}}{\text{C}}=\text{C}+\overset{\text{C}}{\text{C}}=\overset{\text{C}}=\overset{\text{C}}{\text{C}}=\overset{\text{C}}=\overset{\text{C}}=\overset{\text{C}}=\overset{\text{C}}=\overset{\text{C}}=\overset{\text{C}}=\overset{\text{C}}=\overset{\text{C}$$

Reactions of Unsaturated hydrocarbons (Alkenes)

Explanation for Markovnikov's Rule

Example; Addition of HBr to propene

$$\begin{array}{c}
 & \text{adds to C-1} \\
 & \text{CH}_3\text{CHCH}_3 \\
 & \text{isopropyl cation}
\end{array}$$

$$\begin{array}{c}
 & \text{CH}_3\text{CHCH}_3 \\
 & \text{isopropyl cation}
\end{array}$$

$$\begin{array}{c}
 & \text{adds to C-2} \\
 & \text{propense}
\end{array}$$

$$\begin{array}{c}
 & \text{CH}_3\text{CH}_2\text{CH}_2 \\
 & \text{propyl cation}
\end{array}$$

In modern terms Markovnikov's rule can be restated:

The addition of an unsymmetrical reagent HX to an unsymmetrical alkene proceeds in such a direction as to produce the more stable carbocation.

$$\begin{array}{c} R \\ R-C^{+} > R-C^{+} > R-C^{+} > R-C^{+} > R-C^{+} > R-C^{+} > C^{+} \\ R \\ R \\ R \\ R \\ \end{array}$$
tertiary (3°) secondary (2°) primary (1°) methyl (unique) most stable least stable

Reactions of Unsaturated hydrocarbons (Alkenes)

3.2. Addition of Water: Hydration

If an acid catalyst is present, water (as H-OH) adds to alkenes and the product is alcohol.

$$CH_{2} = CH_{2} + H - OH \xrightarrow{H^{+}} CH_{2} - CH_{2}$$
 (or $CH_{3}CH_{2}OH$)
$$H \quad OH \quad ethanol$$

$$CH_{3}CH = CH_{2} + H - OH \xrightarrow{H^{+}} CH_{3}CHCH_{3}$$

$$OH \quad 2-propanol$$

$$P - OH \quad 2-propanol$$

$$OH \quad 1-propanol$$

$$OH \quad 1-propanol$$

$$OH \quad CH_{3}C = CH_{2} + H - OH \xrightarrow{H^{+}} CH_{3}CCH_{3}$$
 ($CH_{3}CHCH_{2}OH$)
$$CH_{3} \quad CH_{3} \quad CH_{3}$$

$$CH_{3} \quad CH_{3}$$

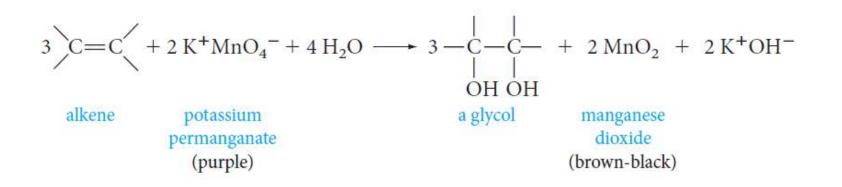
$$CH_{3} \quad OH$$

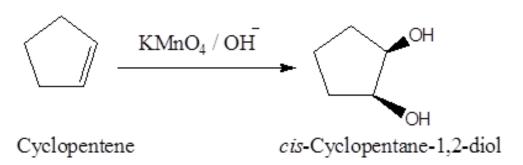
Reactions of Unsaturated hydrocarbons (Alkenes)

1.Ozonolysis

- Ozonolysis can be used to locate the position of a double bond.
- **Example**, ozonolysis of 1-butene gives two different aldehydes, whereas 2-butene gives a single aldehyde.

Oxidation Reactions


Reactions of Unsaturated hydrocarbons (Alkenes)


Hexane does not react with purple KMnO₄ (left); cyclohexene (right) reacts, producing a brown-black

precipitate of MnO₂.

2. Oxidation Using KMnO₄

Alkenes react with alkaline potassium permanganate to form glycols (compounds with two adjacent hydroxyl groups).

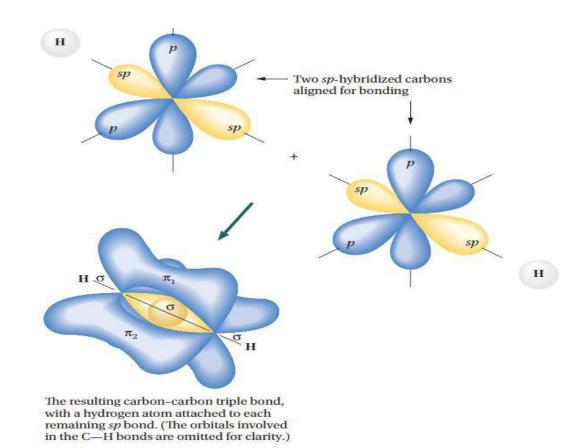
Uses of Alkenes

SYNTHETIC POLYMERS

Synthetic polymers are produced when small molecules called monomers bond together to form a much smaller number of very large molecules.

An important example:

- Polyvinylchloride; manufacture of water and sewer pipe.
- Polyethylene (plastic bags, milk cartons),
- Polypropylene, (impact-resistant plastics, indoor-outdoor carpeting),
- Polyacrylonitrile (Orlon, carpets),
- Polystyrene (foam insulation)



3. ALKYNES

The Structure of Alkynes

Unsaturated hydrocarbons 2. Alkynes Saud University

- Alkynes are hydrocarbons that contain a carbon-carbon triple bond.
- Alkynes are also known as Acetylenes.
- General formula is C_nH_{2n-2}
- Hybridization; sp-hybridized orbitals
- The angle between them is 180° and the bond length 1.20 A°
- The geometry is Linear.

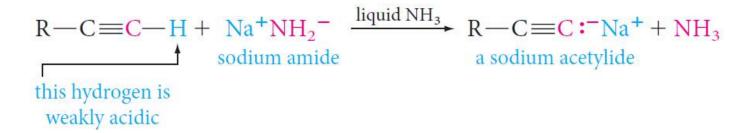
Unsaturated hydrocarbons 2. Alkynes Saud University

The Structure of Alkynes

- \circ The simplest members of the Alkynes series are $C_2 \& C_3$
- The IUPAC names are derived from the corresponding alkanes by replacing the —ane ending by —yne.
- IUPAC rules as discussed for Alkenes.

HC
$$=$$
 CH H₃C-C $=$ CH H₃C-C $=$ CH H₃C-C $=$ CH₃ IUPAC name: Ethyne Propyne 1-Butyne 2-Butyne

Common name: Acetylene


o Example:

3-Chloro-2,7-dimethyl-4-nonyne

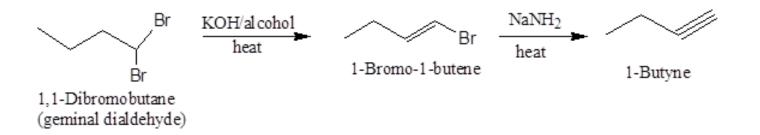
Unsaturated hydrocarbons 2. Alkynes Saud University

Acidity of Alkynes

 A hydrogen atom on a triply bonded carbon (Terminal Alkyne) is weakly acidic and can be removed by a very strong base (as Sodium amide).

- Internal alkynes (Non-Terminal Alkyne) have no exceptionally acidic hydrogens.
 - Relative Acidity of the Hydrocarbon.

 Terminal alkynes, are more acidic than other hydrocarbons


HC
$$\equiv$$
CH \rightarrow H₂C \equiv CH₂ \rightarrow H₃C \rightarrow CH₃

Acidity increases

1) Dehydrohalogenation of Alkyl dihalides

Preparation of Unsaturated hydrocarbons (Alkynes)

Alkynes can be prepared under alkaline conditions via deydrohalogenation of alkyl dihalides

2) Reaction of Sodium Acetylide with Primary Alkyl Halides

Preparation of Unsaturated hydrocarbons (Alkynes)

Acetylene

Monosubstituted Acetylenes

Reactions of Unsaturated hydrocarbons (Alkynes)

1. Addition of Hydrogen: Hydrogenation

- With an ordinary nickel or platinum catalyst, alkynes are hydrogenated all the way to alkanes.
- However, a special palladium catalyst (called Lindlar's catalyst) can control hydrogen addition so that only one mole of hydrogen adds. In this case, the product is a cis alkene.
- On the other hand, reduction using metals such a s sodium or lithium in liquid ammonia results in formation of trans alkenes.

H₃C
$$CH_3$$
 H_2/Pd H_3 C $C=C$ CH_3 CH_4 CH_5 CH_5

Reactions of Unsaturated hydrocarbons (Alkynes)

2. Addition of Halogen: Halogenation

Bromine adds as follows; In the first step, the addition occurs mainly trans.

$$H-C \equiv C-H \xrightarrow{Br_2} H \xrightarrow{Br} C = C \xrightarrow{Br} H \xrightarrow{Br_2} H \xrightarrow{Br} H \xrightarrow{H} H \xrightarrow$$

3. Addition of Hydrogen Halide

With unsymmetrical triple bonds and unsymmetrical reagents, Markovnikov's Rule is followed in each step, as shown in the following example:

$$CH_{3}C = CH + H - Br \longrightarrow CH_{3}C = CH_{2} + Br - CH_{3}C = CH_{2}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C = CH_{2}$$

$$CH_{3}C = CH_{2} + H - Br \longrightarrow CH_{3}C - CH_{3} + Br - CH_{3} - CC - CH_{3}$$

$$Br$$

$$CH_{3}C = CH_{2} + H - Br \longrightarrow CH_{3}C - CH_{3} + Br - CH_{3}C - CH_{3}$$

$$Br$$

$$CH_{3}C = CH_{2} + H - Br \longrightarrow CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CC - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{2} + Br - CH_{3}C - CH_{3}$$

$$CH_{3}C = CH_{3}C - CH_{3}C$$

$$CH_{3}C = CH_{3}C - CH_{3}C$$

$$CH_{3}C = CH_{3}C - CH_{3}C$$

$$CH_{3}C = CH_{3}C$$

$$CH_{3}C$$

Reactions of Unsaturated hydrocarbons (Alkynes)

4. Addition of Water: Hydration

- Addition of water to alkynes requires not only an acid catalyst but mercuric ion as well.
- The mercuric ion forms a complex with the triple bond and activates it for addition.
- Although the reaction is similar to that of alkenes, the initial product a vinyl alcohol or enol rearranges to a carbonyl compound (keto form).

H-C=C-H + H-OH

Acetylene

H₂SO₄, HgSO₄

Vinyl alcohol
(an unstable enol)

H₃C-C=C-H

Propyne

$$H_3$$
C-C-C-C-H

An enol
(unstable)

 H_3 C-C-C-C-H

Acetone

Acetone

Uses of Alkynes

Alkynes;

- Ethyne or acetylene reacts with oxygen to produce enough heat to weld metals.
- Anti-tumor agent
 - Many alkynes are dangerous for humans when used in pharmaceuticals. However, specific alkynes, known as ene-diynes, hold a very strong and aggressive anti-tumor compound. Calicheamicin is an example of an anti-tumor working agent
- Drug production

Alkynes are used in the manufacture of many drugs on the market, such as antiretroviral efavirenz and the antifungal terbinafine.

- General uses;

- Making organic compounds
- Organic solvents