Antigen-Antibody **Reactions** (2)

By: Masheal Aljumaah OCT 2018

Learning **objectives**:

introduction to Antigen Antibody reactions.

Antigen Antibody reactions part1: Precipitation,

Flocculation and Immunodiffusion.

Antigen Antibody reactions part 2: Agglutination.

Antigen Antibody reactions part 3: Complement Fixation Test.

Precipitation

PRECIPITATION

Soluble antigen and antibody electrolytes

Suitable temperature and pH

- Insoluble precipitate precipitation :
- Suspended floccules flocculation

Liquid

Gel

Precipitation Curve

LATTICE THEORY

the interaction of multivalent antige n with multivalent antibody will, at o ptimum proportions of each (zone of equivalence), result in the formation of a lattice and a precipitate. Ag excess = early infection.

Ab excess= late in infection

Precipitation Curve

Zone of antibody excess (Prozone)

precipitation is inhibited and antibody not bound to antigen can be detected in the supernatant

Zone equivalence

Maximal precipitation in which antibody and antigen form large insoluble complexes and neither antibody nor antigen can be detected in the supernatant;

Zone of antigen excess (Postzone)

Precipitation is inhibited & Ag. not bound to Ab. can be detected in the supernatant

Antigen added

) In liquid: Precipitation

(a) Ring Precipitate:

- layering antigen solution over column of antibody in a narrow tube
- Precipitate at the junction of two liquids

Example:

- 1. Ascoli's thermoprecipitin test Anthrax
- 2. Lancefield grouping of streptococci

In liquid: Precipitation

Bottom Precipitate

Occurs when Soluble Ag interact with soluble Ab and form a visible precipitate that give bottom ppt <u>after</u> <u>centrifugation.</u>

In liquid: Precipitation

VDRL

(b) Flocculation test:

1- Slide Flocculation test

Weakly reactive

Strongly reactive

 Drop of antigen and antiserum on a slide – mixed by shaking – floccules appear

Example:

1. VDRL slide test – syphilis

(The venereal disease research laboratory)

Negative VDRL test

Positive VDRL test

In liquid: Precipitation

(b) Flocculation test:

- 1- Tube Flocculation test
 - Antigen and antiserum in a test tube– floccules appear
 Example.
 - 1. Kahn test for syphilis

Kahn antigen – alcoholic extract of fresh beef heart with cholesterol + On reaction with syphilitic serum, floccules are formed which can be seen with the naked eye.

Why?

- Visible, distinct **band** of precipitation —— preserved for a long period of time
- **Different antigens** observed Each Ag will form a different band.
- Cross-reaction and non-identity between different antigens

(a) Oudin Immunodiffusion (Single diffusion - one dimension)

- Antibody agar gel test tube
- Antigen solution layered over it
- Antigen diffuses towards the agar gel, forming a line of precipitation

(b) Oakley–Fulthorpe Immunodiffusion (Double diffusion - one dimension)

- Antibody incorporated in gel
- Above this column of plain agar
- Antigen layered on top of this
- Antigen and antibody move towards each other

- (c) RADIAL IMMUNODIFFUSION (single diffusion in two dimensions)
 - Antiserum in gel slide/Petri dish
 - Antigen added to wells cut on surface
 - Diffusion radially from well
 - Ring-shaped bands of precipitation

(d) OUCHTERLONY IMMUNODIFFUSION (double diffusion – two dimensions)

Most widely employed

- Agar gel on a slide
- Wells cut using a template
- Antiserum in central well
- Antigen in surrounding wells Example.
- 1. Elek's gel precipitation test for *C.diphtheriae*

(d) IMMUNOELECTROPHORESIS(IEP)

Why? (to speed up the process)

- Electrophoretic separation of a composite antigen into its constituent proteins
- Followed by immunodiffusion against its antiserum
- Result Separate precipitation lines between each protein and its antibody

• Immunoelectrophoresis (IEP)

NHS = "normal human serum", pt = Patient serum

- Note that there is an abnormality or bowing to the precipitin line of the patient's serum with certain anti-immunoglobulin isotype antibodies.
- On the left bowing occurs with anti-gamma and anti-kappa antibodies.

Electrophoresis separates antigen molecules according to differences in their electrical charges and molecular weight then specific **antibodies diffuse** and react with separated antigen forming precipitin bands.

(e)ELECTROIMMUNODIFFUSION (3 techniques) 1. Counter immunoelectrophoresis (CIE)

 Simultaneous electrophoresis of antigens and antibody in gel in opposite directions

Example: ∞-fetoprotein,cryptococcal antigen

Electric current

Wells containing antigen and antibody

(f) ELECTROIMMUNODIFFUSION 2. Rocket electrophoresis (One dimensional, single electroimmunodiffusion)

- Quantitative estimation of antigens
- Antigen Increasing concentration placed in wells
 punched in set gel
- Antigen electrophoresed into antibody containing agarose
- Pattern of immunoprecipitation -Rocket

(g) ELECTROIMMUNODIFFUSION 3. Laurell's two-dimensional electrophoresis

Measurement of Precipitation by Light

Antigen-antibody complexes, when formed, will precipitate in a solution resulting in a turbid or cloudy appearance that can be measured by:

intensity)

Amount of light scattered correlates to the concentration of the solution

Usage of turbidimetry and nephelometry

measurement of serum proteins' concentration
(immunoglobulins, acute-phase proteins, complement
components C3, C4, transferrin, albumin,...)

- * Rapid.
- fully-automated techniques
- ✤ for large quantity of samples

POMODORO TECHNIQUE Get More Done

The Pomodoro Technique

Pomodoro timer

http://www.tomatotimers.com/

You can even help in planting real trees! Real forests!

66 Assignment

- Pick <u>one</u> precipitation application and write briefly about it.
- which immunoglobulin class is the most efficient to produce precipitation reaction?
- <mark>a-</mark> IgG
- b- IgM

c-lgA

THANKS!

Any questions?

You can find me at third floor office 87 maljumaah1@ksu.edu.sa