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Biharmonic functions are defined on Euclidean spaces, Riemannian mani-

folds, infinite trees, and more generally on abstract harmonic spaces. In this

note, we consider biharmonic functionsb defined on annular setsΩ \K and

obtain Laurent-type decompositions forb in the Euclidean spaces and in infi-

nite trees. Particular importance is given to the investigation whenb extends

as a distribution onΩ.
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1. INTRODUCTION

Consider a distributionS with support in an intervalA. Let θ be a test function in

D(R) equal to1 on A. Then it is known (see for example, Hervé [7, [Proposition
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3.22]) that the mapT defined asT (ϕ) = S(θϕ) for everyϕ ∈ C∞(R) is a linear

map onC∞(R) such thatT (ϕ) = S(ϕ) if ϕ ∈ D(R); there exists a bounded

interval I, an integerm and positive coefficientsc0, c1, . . . , cm such that|Tϕ| ≤
m∑

k=0

ck sup
I
|ϕk| for any ϕ ∈ C∞(R). This result leads to the question: ifK is a

compact subset of an open setΩ in Rn, and if S is a distribution inΩ \ K, then,

does there exist a distributionT on Ω such thatT = S on Ω \ K? We answer

this question in the case whenS is a regular distribution inΩ \ K defined by a

biharmonic functionb on Ω \ K, that is,b is aC∞ function onΩ \ K such that

∆2b = 0.

2. PRELIMINARIES

Let ∆ be the Laplacian operator inRn, n ≥ 2. The fundamental singularitySn of

the operator∆2 = ∆∆ atx = 0 satisfies the differential equation∆2Sn = δ in Rn

in the sense of distributions, whereδ is the Dirac measure supported at the origin.

As a function ofr = |x|, Sn can be constructed by solving the differential equation

∆Sn(r) =
1

rn−1

(
rn−1S′n(r)

)′ = En(r), r > 0,

En being the fundamental singularity of∆ atx = 0, which is given by

En(r) =





1
2π

log r, n = 2

−1
(n− 2)σnrn−2

, n ≥ 3.

This yields

Sn(r) =





1
8π

r2(log r − 1), n = 2

− 1
8π

r, n = 3

− 1
8π2

log r, n = 4

1
2(n− 2)(n− 4)

1
rn−4

, n ≥ 5.
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Hereσn is the surface area of the unit sphere inRn. Note thatSn extends as a

continuous function inRn whenn = 2 andn = 3, but not whenn ≥ 4. If Ω is an

open set inRn andK is a compact subset ofΩ, we shall defineH0(Rn\K) to be

the set of harmonic functions inRn\K which behave likeEn as|x| → ∞. More

precisely,s ∈ H0(Rn\K) if s is harmonic inRn\K and

s(x) = αEn(|x|) + o
(
1/ |x|n−2

)
as |x| → ∞,

for some constantα. In [3], the following two results were proved.

Theorem2.1 — If u is a harmonic function inΩ\K, it can be represented

uniquely as a sumu = s+ t of a functions ∈ H0(Rn\K) and a harmonic function

t in Ω such thats(x)−α log |x| → 0 as|x| → ∞ in R2 and|s(x)| ≤ p(x) outside

a compact set inRn, n ≥ 3, wherep(x) is a potential inRn.

Theorem2.2 — If u is a biharmonic function inΩ\K, it can be represented

as a sumu = p + q of a functionp, which is biharmonic inRn\K with ∆p ∈
H0(Rn\K), and a biharmonic functionq in Ω. This representation ofu is unique

up to an additive harmonic function inRn.

3. BIHARMONIC FUNCTIONS IN THE NEIGHBOURHOOD OF ASINGULAR

POINT

Theorem3.1 — SupposeΩ is an open set inRn, x0 ∈ Ω. Let u be a biharmonic

function inΩ\{x0}. Then there is a decomposition ofu in the formu = p + q on

Ω \ {x0}, whereq is biharmonic onΩ andp(x) = αSn(|x− x0|) + g(x). Hereα

is a uniquely determined constant andg(x) is biharmonic onRn \ {x0}, such that

∆g(x) − β log |x| → 0 when|x| → ∞ in R2 for someβ, and |∆g(x)| ≤ s(x)
outside a compact set for some potentials onRn if n ≥ 3. This decomposition of

u is unique up to an additive harmonic function inRn.

PROOF : By Theorem 2.2,u = p + q in Ω \ {x0}, wherep is biharmonic in

Rn \ {x0} andq is biharmonic inΩ. Since∆p is harmonic inRn \ {x0}, it can

be written as∆p(x) = αEn(x) + h(x) whereh(x) is harmonic inRn \ {x0} and

tends to0 as|x| → ∞ if n ≥ 3. Thenp(x) = αSn(|x − x0|) + g(x) whereg(x)
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is biharmonic and∆g(x) = h(x) such thath(x) − β log |x| → 0 when|x| → ∞
in R2 and|h(x)| ≤ s(x) wheres(x) is a potential inRn, if n ≥ 3.

Supposeu = p1 + q1 is another such decomposition withp1(x) = α1Sn(|x−
x0|) + g1(x). Then

B =

{
p− p1, in Rn \ {x0};
q − q1, in Ω.

is biharmonic onRn and∆B = (α−α1)En(|x−x0|)+[h(x)−h1(x)] inRn\{x0}.
In R2, since[h(x)− h1(x)] is bounded outside a compact set, its flux at infinity is

0; since∆B is harmonic inR2, its flux at infinity is also0. Consequently,α = α1.

The conditions onp andp1 imply that∆B → 0 when|x| → ∞ andn = 2; and

|∆B(x)| is dominated by a potential onRn outside a compact set ifn ≥ 3. In

either case,∆B being harmonic onRn, we conclude that∆B = 0, that isB is

harmonic onRn. ¥

In the above sumαSn(|x− x0|) + g(x) representingp(x) in Ω, it is worth

investigating the conditions under which the functiong can be left out; for thenu

becomes (up to a multiplicative constant) a fundamental solution for the operator

∆2. The answer is provided by B̂ocher’s theorem (see [6]), which states that any

positive harmonic function in the punctured unit disc{x ∈ Rn : 0 < |x| < 1} can

be represented as a sumcEn(|x|)+h(x), wherec is a constant andh is a harmonic

function in the unit disc{x ∈ Rn : |x| < 1}. Clearly, the same conclusion holds

if the harmonic function is merely bounded on one side. Thus, with∆u(x) =
αEn(|x− x0|)+∆g(x)+∆q(x) in Ω\{x0}, we immediately conclude that if∆u

is bounded on one side in a neighbourhood ofx0, then so isαEn(|x−x0|)+∆g(x)
and hence∆g has the formβEn(|x− x0|) + H(x) whereH(x) is harmonic inΩ.

Consequentlyg may be dropped from the representation ofu. Thus, we have

Theorem3.2 — Let Ω be an open set inRn, x0 ∈ Ω. Let u be a biharmonic

function inΩ \ {x0}. Then the following statements are equivalent:

(i) u(x) = αSn(|x− x0|) + q(x) in Ω\{x0} andq is biharmonic inΩ.

(ii) ∆2u = αδx0 in Ω.
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(iii) u is biharmonic inΩ\{x0} and∆u is bounded on one side in a neighbour-

hood ofx0.

That settles the case of the removable singularity ofg atx0. The next question

we can ask is: what other types of singularity cang have atx0? This question will

now be addressed.

4. ISOLATED SINGULARITY OF A BIHARMONIC FUNCTION

In this section we consider the question: letu be biharmonic inΩ \ {x0}. Is there

a distributionT onΩ such thatT restricted toΩ \ {x0} is defined byu? Following

the standard notation from calculus inRn, we takex = (x1, ..., xn) to be a point in

Rn and∂k = ∂/∂xk, 1 ≤ k ≤ n. If β = (β1, ..., βn) is ann-tuple of nonnegative

integers, then∂β denotes the differential operator

∂β = ∂β1
1 · · · ∂βn

n =
∂|β|

∂β1
1 x1 · · · ∂βn

n xn

of order|β| = β1 + ... + βn.

If u is a biharmonic function inΩ\{x0} which extends to a distribution inΩ,

then the distribution∆2u is supported at the single pointx0. Such a distribution,

according to a standard result of the theory (see [9] or [1, Theorem 3.2], for ex-

ample), can only be a finite linear combination of the Dirac measure atx0 and its

derivatives. That is, there is a nonnegative integerm and constantscβ such that

∆2u =
∑

|β|≤m

cβ∂βδx0 .

The general solution of this equation is

u(x) =
(∑

|β|≤m
cβ∂βδx0

)
∗ Sn (|x|) + q(x)

=
∑

|β|≤m

cβ∂βSn (|x− x0|) + q(x), (4.1)
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where∗ denotes the convolution product andq is a biharmonic function inΩ. A

comparison between Equation (4.1) and the statement in Theorem 3.1 leads to the

conclusion thatα is the constantc0 and

g(x) =
∑

1≤|β|≤m

cβ∂βSn (|x− x0|) . (4.2)

Since this was obtained under the assumption thatu can be extended to a dis-

tribution inΩ, and since any derivative ofSn defines a distribution inRn, we have

therefore proved.

Theorem4.1— Let Ω be an open set inRn andx0 ∈ Ω. If u is a biharmonic

function inΩ\{x0}, thenu extends as a distribution inΩ if, and only if, its singular

part is a finite linear combination ofSn (|x− x0|) and its derivatives.

Remark: As a consequence of the above Theorem 4.1 and Theorem 1.1 in

Futamma and Mizuta [5] we can state: Letu be biharmonic onΩ \ {x0} in Rn.

For some real numbers, supposelim inf
r→0

rs

∫

|x−x0|=r

|u(x)|dσ(x) = 0 wheredσ

refers to the surface integral. Thenu extends as a biharmonic distribution onΩ; if

n ≥ 4 + s, thenu actually extends as a biharmonic function onΩ.

Examples

1. En satisfies

∆2En = ∆δ =
n∑

k=1

∂2
kδ

and is therefore biharmonic inRn\{0}. According to the representation given in

Theorem 3.1, bothα andq vanish andg(x) = En(x) =
∑n

k=1 ∂2
kSn(x).

2. The functionxkEn(|x|) is biharmonic inRn\{0} for all k ∈ {1, ..., n}, since

∆(xkEn) = 2∂kEn + xkδ = 2∂kEn

∆2(xkEn) = 2∂kδ.

Here again bothα andq vanish andg(x) = xkEn(x) = 2∂kSn(x).
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3. The function|x|2 En, on the other hand, is also biharmonic inRn\{0}, with a

singularity of the same order asSn atx = 0 whenn 6= 4. Here we have

∆2(|x|2 En) = ∆

(
2nEn + 4

n∑

k=1

xk∂kEn + |x|2 δ

)

= 2nδ + 8
n∑

k=1

∂2
kEn + 4

n∑

k=1

xk∂kδ

= 2(4− n)δ.

Consequentlyα = 2(4− n), whereas bothg andq vanish.

But we know, of course, that the singularity of a biharmonic function inΩ
need not be of finite order, as in the case of a harmonic function with an essential

singularity atx0. In that case, we would expect the finite sum over|β| ≤ m in the

right-hand side of (4.1) to be replaced by an infinite sum which, in fact, represents

the principal part of the Laurent series ofu aboutx0. Such a function cannot be

extended as a distribution toΩ.

5. BIHARMONIC FUNCTION GENERATED BY A DISTRIBUTION WITH

COMPACT SUPPORT

In this section we consider the case where the biharmonic functionu, instead of

having a point singularity{x0}, has its singularity in a compact set inΩ.

If u is a biharmonic function inΩ\K which extends to a distribution inΩ, then

∆2u is a distribution inΩ with compact supportK and is therefore of finite order,

saym. Hence (see [9]), given any compact neighbourhoodω of K in Ω, there is a

family of (signed) Radon measures{µβ : |β| ≤ m} in Rn such that

∆2u =
∑

|β|≤m

∂βµβ (5.1)

with suppµβ ⊂ ω for all |β| ≤ m. The solution of (5.1) is given by

u =
∑

|β|≤m

∂βSn ∗ µβ + q (5.2)
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for some biharmonic functionq in Ω.

In the expression (5.2) the sum
∑
|β|≤m ∂βSn ∗ µβ is of course the singular

component ofu. The first term in this sum,

Sn ∗ µ0(x) =
∫

Rn

Sn(|x− ξ|)dµ0(ξ),

is biharmonic inRn\{suppµ0}. Since this integral is over a compact set, we can

differentiate inside the integral to obtain

∆(Sn ∗ µ0)(x) =
∫

Rn

En(|x− ξ|)dµ0(ξ)

= µ0 (Rn) En(|x|) + o
(|x|2−n

)
as |x| → ∞.

HenceSn ∗ µ0 is the term which carries the flux of∆u at∞.

Remark: The case when the distribution∆2u is of order0 is therefore of

special significance, as it corresponds to the situation characterized by Bôcher’s

theorem forK = {x0}. It is also the case which is called for in most physical

applications, a typical example of which is given below.

6. APPLICATION TO A BOUNDARY-VALUE PROBLEM

When a thin, elastic plate in thexy plane, supported at its edges, is subjected to a

normal pressure loadp, the resulting deflectionu, according to the linear theory of

elastic plates (see [8], for example), satisfies the differential equation

D

(
∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+

∂4u

∂y4

)
= p(x, y),

whereD is the flexural rigidity constant for the plate. Settingp/D = µ, and

assuming that the plate, which occupies the regionΩ, is simply supported at the

boundary, we arrive at the boundary-value problem

∆2u = µ in Ω,

u = ∆u = 0 on ∂Ω. (6.1)
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This problem can be solved explicitly for certain simple domains, such as a

rectangle, by separation of variables and the solution is expressed as a Fourier

series. But this method does not work so well for other shapes, even for a simple

circular plate. It also relies on the feasibility of expressingµ as a Fourier series.

A more effective approach to solving the boundary-value problem (6.1) is to

construct the Green’s function forΩ, and then use the Green’s formula to express

u as the integral overΩ of the convolution product of the Green’s function withµ.

This implicitly requires setting up an appropriate Hilbert space structure to handle

the Green’s formula. But we can follow the procedure outlined above for repre-

senting biharmonic functions, and thereby avoid these limitations.

We takeΩ to be a bounded domain inRn which is regular for the Dirichlet

problem, in the sense that, given a continuous functionf on ∂Ω, there is a unique

harmonic functionh in Ω such thath(x) → f(ξ) asx → ξ for everyξ ∈ ∂Ω. We

shall also assume thatµ is a Radon measure inRn with compact supportK in Ω.

The (distributional) solution of∆2u = µ in Rn is given by

u = Sn ∗ µ + q, (6.2)

whereq is a biharmonic function inRn. With Sn biharmonic inRn\{0} and locally

integrable inRn, the function

Sn ∗ µ(x) =
∫

Rn

Sn(|ξ − x|)dµ(ξ)

is well defined inRn and biharmonic (and continuous) inRn\K. As |x| → ∞ it

behaves likeαSn(|x|), whereα = µ(K).

Applying the Laplacian operator to equation (6.2) gives

∆u = En ∗ µ + h1, (6.3)

whereh1 = ∆q is a harmonic function inRn. Here alsoEn ∗ µ is harmonic,

and hence continuous, inRn\K and behaves likeαEn(|x|) as |x| → ∞. Let

h′1 = h1χω whereω is a relatively compact domain⊃ Ω. Then the convolution
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En ∗ h′1 is well defined and satisfies∆(En ∗ h′1) = h′1 = ∆q in ω. There is,

therefore, a harmonic functionh2 in ω such that

q = En ∗ h′1 + h2 in ω. (6.4)

Now the continuity ofu andSn ∗µ on Ω̄\K implies, in view of Equation (6.2),

the continuity ofq, and hence ofh2 on Ω̄.

In the special case whenΩ is the ballB = {x ∈ Rn : |x| < R}, the harmonic

extensions of−En ∗ µ|∂Ω and−(Sn ∗ µ + En ∗ h1)|∂Ω from the sphere∂B to B̄

are readily obtained from the Poisson’s integral formula [3].

Theorem6.1 — Let Ω be a bounded domain inRn, regular for the Dirichlet

problem. Letµ be a Radon measure inRn with compact supportK ⊂ Ω. Let f

andg be two real-valued continuous functions on∂Ω. Then, there exists a unique

u onΩ such that∆2u = µ onΩ, ∆u = f on∂Ω andu = g on∂Ω.

PROOF : The (distributional) solution of∆2v = µ in Rn is given byv =
Sn ∗ µ + q, whereq is a biharmonic function inRn. SinceSn is biharmonic on

Rn \ {0} and is locally integrable,Sn ∗µ(x) =
∫

Rn

Sn(ξ− x)dµ(ξ) is well-defined

onRn and biharmonic (hence continuous) onRn \K. As |x| → ∞, it behaves like

αSn(x) whereα = µ(K).

Let h2 be harmonic onΩ such thath2 = f − ∆v on ∂Ω. Setv1 = ∆v + h2

in Ω. Thenv1 is harmonic inΩ \ K andv1 = f on ∂Ω. Let v2 be a continuous

function with compact support inRn andv2 = h2 on Ω. Thenb = En ∗ v2 is

well-defined onRn and∆b = v2 in Rn and hence∆b = h2 in Ω is harmonic inΩ.

That is,b is biharmonic onΩ.

Let u1 = v + b. Then∆2u1 = ∆2v = µ onΩ, and inRn

∆u1 = ∆v + v2

= ∆v + h2 onΩ

= f on∂Ω.
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Note thatu1 is continuous onRn \ K. Let h1 be harmonic onΩ such that

h1 = g− u1 on∂Ω. Write u = u1 + h1. Thenu is continuous onΩ \K, u = g on

∂Ω, ∆2u = ∆2u1 = µ onΩ, and∆u = ∆u1 = f on∂Ω.

To prove the uniqueness ofu, assume thatq is a real-valued function onΩ such

that∆2q = µ on Ω, ∆q = f on ∂Ω andq = g on ∂Ω. Write p = u − q. Then

∆2p = 0 onΩ, so thatp is biharmonic onΩ, hence∆p is harmonic onΩ such that

∆p = 0 on ∂Ω, so that∆p = 0 on Ω. That is,p is harmonic onΩ andp = 0 on

∂Ω, hencep = 0 onΩ. Thusq = u onΩ. ¥

7. SOME GENERALIZATIONS

The representation of a biharmonic function has been shown to depend in an essen-

tial way on the well known properties of harmonic functions. The same argument

above may be used to represent functions of higher order of harmonicity, that is,

solutions of∆mu = 0 for integer values ofm > 2. These are sometimes referred

to aspolyharmonic functionsof orderm, though this term is used in a slightly

different sense in [4].

If ∆mu = 0 in Ω\K then∆m−1u is harmonic and∆m−2u is biharmonic in

Ω\K, and so Theorems 2.1 and 2.2 may be used to represent these functions. When

K is a single pointx0, this leads in a natural way to the decomposition

u(x) = αEn,m(|x− x0|) + h(x) + r(x) in Ω\{x0}, (7.1)

whereEn,m is the fundamental singularity of∆m, that is, it satisfies∆mEn,m = δ,

whereash is polyharmonic inΩ\{x0} andr is polyharmonic inΩ, both of order

m. Following the procedure of Section 4, the functionh may be expressed as a

linear combination of derivatives ofEn,m, and the representation (7.1) is unique

up to an additive polyharmonic function of orderm− 1 in Rn.

Similarly if u is a polyharmonic function of orderm in Ω\K which extends to

a distribution inΩ, then the formula (5.2) applies with the obvious modifications,

namely thatSn be replaced byEn,m andq be polyharmonic of orderm in Ω.
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8. BIHARMONIC VERTEX SINGULARITY IN THE DISCRETECASE

In this section, we consider the discrete analogue of the above results in the context

of an infinite graph, consisting of a countably infinite number of vertices and a

countably infinite number of edges.

Let X be an infinite tree, connected and locally finite and without any terminal

vertices [2]. To any pair of verticesx andy is associated a numbert(x, y) ≥ 0 such

thatt(x, y) > 0 if and only if [x, y] is an edge inX (that isx andy are neighbours).

We do not supposet(x, y) = t(y, x).

If E is a subset ofX, we say thatx ∈ E is an interior vertex ofE if all

the neighbours ofx are also inE. We denote the set of interior vertices ofE

by
◦
E. For a real-valued functionu on E, u is said to be harmonic if∆u(x) =

∑
y

t(x, y)[u(y) − u(x)] = 0 for everyx ∈
◦
E. If v is a real-valued function on

X for which ∆2v(x) = ∆(∆v)(x) = 0 at everyx ∈
◦
E, thenv is said to be

biharmonic onE.

For anya ∈ X, we can construct a functionqa(x) onX such that(−∆)qa(x) =
δa(x) for anyx ∈ X [2, Theorems 3.2.6 and 3.4.5];qa(x) can be uniquely fixed

if we impose the restriction thatqa is a potential whenX is hyperbolic andqa is

a pseudo-potential ifX is parabolic. Consequently, iff is any real-valued func-

tion on X such thatf = 0 outside a finite set, theng(x) =
∑
y

f(y)qy(x) is

a well-defined function onX for which (−∆)g(x) = f(x) for every x ∈ X.

Moreover sinceX has no terminal vertices, there existsQa(x) on X such that

(−∆)Qa(x) = qa(x).

Theorem8.2— Let E be a finite subset ofX anda ∈
◦
E. Let u(x) be a real-

valued function onX such that∆2u(x) = 0 for everyx ∈
◦
E \ {a}. Then there

exist a functionB(x) such that∆2B(x) = 0 for everyx ∈
◦
E and two uniquely

determined constantsλ andµ such thatu(x) = B(x)+λQa(x)+µqa(x) for every

x ∈ E.

PROOF : Let ∆u(x) = h(x) for x ∈
◦
E \ {a}. Then∆h(x) = 0 for every
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x ∈
◦
E \ {a}. Let ∆h(a) = −λ. Write v(x) = h(x) + λqa(x) for x ∈

◦
E.

Let b(x) be defined onE such that∆b(x) = v(x) for x ∈ E so that∆2b(x) =

0 for x ∈
◦
E, that is,b(x) is biharmonic onE. Then forx ∈

◦
E \ {a}, ∆b(x) =

∆u(x) − λ∆Qa(x). Consequently,f(x) = u(x) − [b(x) + λQa(x)], which is

well-defined onE, satisfies the condition∆f(x) = 0 for x ∈
◦
E \ {a}. Hence

f(x) = µqa(x) + g(x) for x ∈ E, whereµ is a constant and∆g(x) = 0 for

x ∈
◦
E.

Thus, onE,

u(x) = b(x) + λQa(x) + µqa(x) + g(x)

= B(x) + λQa(x) + µqa(x),

where∆2B(x) = 0 for everyx ∈
◦
E.

Uniqueness: Supposeu(x) = B′(x) + λ′Qa(x) + µ′qa(x) is another such

decomposition. Then−(λ−λ′)qa(x)+∆(B−B′)(x) = 0 for everyx ∈
◦
E. Since

∆(B − B′) is harmonic onE, we conclude thatλ = λ′. Now B(x) − B′(x) =
−(µ − µ′)qa(x) so that∆(B − B′) = (µ − µ′)δa is harmonic onE. Hence, we

concludeµ = µ′. ¥

Remark: An infinite networkX is called abipotential networkif there exist

two positive potentialsp andq such that∆q = −p [2, p. 124]. In a bipotential

networkX, if Gy(x) is the Green potential with harmonic support{y}, then there

exists a unique potentialQy(x), called thebiharmonic Green potential, such that

∆Qy(x) = −Gy(x) [2, Corollary 5.2.5]. Consequently, in the above Theorem

8.1, if X is a bipotential tree, then not only the constantsλ andµ but also the

biharmonic functionB(x) is uniquely determined.
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